Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 276: 107439, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692068

ABSTRACT

Radionuclides from the reactor accident Fukushima Daiichi nuclear power plant were observed in the airborne aerosols at CTBT International Monitoring System (IMS) stations (MRP43, CMP13) in Africa. The maximum activity concentrations in the air measured in Mauritania were 186.44 10-6 Bq.m-3, 264.16 10-6 Bq.m-3 and 1269.94 10-6 Bq.m-3 for 134Cs, 137Cs and 131I respectively, and in Cameroon 16.42 10-6 Bq.m-3, 25.53 10-6 and 37.58 10-6 Bq.m-3 respectively for 134Cs, 137Cs and 131I. The activity ratio of 134Cs/137Cs is almost constant throughout the period of time relevant to this study due to their long half-lives of 30.2 years for 137Cs and 2.06 years for 134Cs. Whereas the 131I/137Cs activity ratio varies in time according to the radioactive decay with a half-live of 8.06 days for 131I and different removal rates of both radionuclides from the atmosphere during transport. The EMAC atmospheric chemistry-general circulation was used to simulate the emission and transport of the isotope 137Cs and map the deposition of the 137Cs deposition over Africa.


Subject(s)
Aerosols , Air Pollutants, Radioactive , Cesium Radioisotopes , Fukushima Nuclear Accident , Radiation Monitoring , Air Pollutants, Radioactive/analysis , Aerosols/analysis , Cesium Radioisotopes/analysis , Atmosphere/chemistry , Iodine Radioisotopes/analysis , Nuclear Power Plants , Africa
2.
Sci Total Environ ; 927: 172120, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575031

ABSTRACT

The ongoing energy transition from conventional fuels to renewable energy sources (RES) has given nations the potential to achieve levels of energy self-sufficiency previously thought unattainable. RES in the form of utility-scale solar and wind energy are currently the leading alternatives to fossil-fuel generation. Precise location siting that factors in efficiency limitations related to current and future climate variables is essential for enabling the green energy transition envisioned for 2050. In this context, understanding and mapping the intermittency of RES provides insights to energy system operators for their seamless integration into the grid. The Eastern Mediterranean and Middle East (EMME) region has the potential to harness vast amounts of RES. The scarcity of observations from weather station networks and the lack of private sector incentives for transitioning to RES mean that relevant, supporting weather and climate studies have been limited. This study employs the Weather Research and Forecasting model with Chemistry (WRF-CHEM) to estimate the RES technical potential of EMME countries and map the hourly generation profiles per source and country, simulated for the reference year 2015 and considering future conditions. The findings indicate that by 2050, seven countries within the region could transform into net energy exporters, while the remaining nine might remain reliant on energy imports or fossil fuels. Egypt emerges as a "powerhouse", potentially enjoying a potential surplus energy generation of 76 GW per hour, whereas the United Arab Emirates may face an annual deficit of 955 TWh. Further, we derived the hourly generation profiles for wind and solar during different seasons. Four dominant patterns were identified. We find a complementary relationship for six countries, and for four countries, a substitute relationship between solar and wind energy generation. Greece stands out with a near-constant wind energy source, which would facilitate its integration into the national grid.

3.
Article in English | MEDLINE | ID: mdl-38223852

ABSTRACT

Visceral and cutaneous leishmaniases are important public health concerns in Cyprus. Although the diseases, historically prevalent on the island, were nearly eradicated by 1996, an increase in frequency and geographical spread has recently been recorded. Upward trends in leishmaniasis prevalence have largely been attributed to environmental changes that amplify the abundance and activity of its vector, the phlebotomine sand flies. Here, we performed an extensive field study across the island to map the sand fly fauna and compared the presence and distribution of the species found with historical records. We mapped the habitat preferences of Phlebotomus papatasi and P. tobbi, two medically important species, and predicted the seasonal abundance of P. papatasi at unprecedented spatiotemporal resolution using a climate-sensitive population dynamics model driven by high-resolution meteorological forecasting. Our compendium holds a record of 18 species and the locations of a subset, including those of potential public and veterinary health concern. We confirmed that P. papatasi is widespread, especially in densely urbanized areas, and predicted that its abundance uniformly peaks across the island at the end of summer. We identified potential hotspots of P. papatasi activity even after this peak. Our results form a foundation to inform public health planning and contribute to the development of effective, efficient, and environmentally sensitive strategies to control sand fly populations and prevent sand fly-borne diseases.

4.
Sci Total Environ ; 843: 156861, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35750162

ABSTRACT

In late March 2018, a large part of the Eastern Mediterranean experienced an extraordinary episode of African dust, one of the most intense in recent years, here referred to as the "Minoan Red" event. The episode mainly affected the Greek island of Crete, where the highest aerosol concentrations over the past 15 yeas were recorded, although impacts were also felt well beyond this core area. Our study fills a gap in dust research by assessing the multi-sectoral impacts of sand and dust storms and their socioeconomic implications. Specifically, we provide a multi-sectoral impact assessment of Crete during the occurrence of this exceptional African dust event. During the day of the occurrence of the maximum dust concentration in Crete, i.e. March 22nd, 2018, we identified impacts on meteorological conditions, agriculture, transport, energy, society (including closing of schools and cancellation of social events), and emergency response systems. As a result, the event led to a 3-fold increase in daily emergency responses compare to previous days associated with urban emergencies and wildfires, a 3.5-fold increase in hospital visits and admissions for Chronic Obstructive Pulmonary Disease (COPD) exacerbations and dyspnoea, a reduction of visibility causing aircraft traffic disruptions (eleven cancellations and seven delays), and a reduction of solar energy production. We estimate the cost of direct and indirect effects of the dust episode, considering the most affected socio-economic sectors (e.g. civil protection, aviation, health and solar energy production), to be between 3.4 and 3.8 million EUR for Crete. Since such desert dust transport episodes are natural, meteorology-driven and thus to a large extent unavoidable, we argue that the efficiency of actions to mitigate dust impacts depends on the accuracy of operational dust forecasting and the implementation of relevant early warning systems for social awareness.


Subject(s)
Air Pollutants , Dust , Aerosols , Air Pollutants/analysis , Dust/analysis , Environmental Monitoring , Particulate Matter/analysis
5.
Environ Sci Pollut Res Int ; 29(20): 30193-30205, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34997520

ABSTRACT

Physically based computational modeling is an effective tool for estimating and predicting the spatial distribution of pollutant concentrations in complex environments. A detailed and up-to-date emission inventory is one of the most important components of atmospheric modeling and a prerequisite for achieving high model performance. Lebanon lacks an accurate inventory of anthropogenic emission fluxes. In the absence of a clear emission standard and standardized activity datasets in Lebanon, this work serves to fill this gap by presenting the first national effort to develop a national emission inventory by exhaustively quantifying detailed multisector, multi-species pollutant emissions in Lebanon for atmospheric pollutants that are internationally monitored and regulated as relevant to air quality. Following the classification of the Emissions Database for Global Atmospheric Research (EDGAR), we present the methodology followed for each subsector based on its characteristics and types of fuels consumed. The estimated emissions encompass gaseous species (CO, NOx, SO2), and particulate matter (PM2.5 and PM10). We compare totals per sector obtained from the newly developed national inventory with the international EDGAR inventory and previously published emission inventories for the country for base year 2010 presenting current discrepancies and analyzing their causes. The observed discrepancies highlight the fact that emission inventories, especially for data-scarce settings, are highly sensitive to the activity data and their underlying assumptions, and to the methodology used to estimate the emissions.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Lebanon , Particulate Matter/analysis
6.
Air Qual Atmos Health ; 12(1): 73-86, 2019.
Article in English | MEDLINE | ID: mdl-30687413

ABSTRACT

We evaluate air quality modeling over the East Mediterranean using the benchmarking methodology developed in the framework of the Forum for Air Quality Modelling in Europe (FAIRMODE). FAIRMODE aims to provide a harmonized approach of model evaluation for regulatory purposes. We test the methodology by assessing the performance of the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) against ground-based air quality observations over Cyprus, a member state of the European Union. Two nested domains are used (at 50- and 10-km horizontal grid spacing) with the comparison performed over the innermost domain. We consider performance indicators reflecting regulations for air quality standards (maximum daily 8-hourly mean ozone, hourly nitrogen dioxide, and daily fine particulate matter concentrations). The WRF-Chem model is found to satisfy the proposed performance objectives regarding ozone and NO2, though it underestimates the latter in urban areas possibly due to uncertainties in emission inventories. Fine particulate matter is well represented by the model, except on days with strong influence from natural sources, highlighting the necessity for fine-tuning dust mobilization and transport in the region. The objectives are fulfilled even though discrepancies exist between model and observations. Our results indicate the need for more stringent performance criteria at relatively low concentrations. Overall, we find that the methodology provides in-depth information and relevant statistical metrics to guide air quality and model assessments for monitoring compliance with the EU Air Quality Directives and other guidelines to limit the impact of air pollution on human health and ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...