Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 287(Pt 3): 132275, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34582932

ABSTRACT

In this work, suspended and immobilized Saccharomyces cerevisiae yeast in alginate was utilized as a biocatalyst to interact with different concentrations of tofu wastewater for microalgae microbial fuel cell (MMFC) application. Operating conditions are one of the factors that impact the MMFC's performance, thus they must be optimized. The response surface approach was used to optimize operating conditions, which involved CCD-randomized by five levels of two variables. With an average voltage of 0.13 V, power density of 13.94 mW·m-2, and current density of 102.20 mA·m-2, bioelectricity output produced more suspended yeast than immobilized yeast. The average voltage of MMFC with immobilized yeast was 0.123 V, the power density was 11.25 mW·m-2, and the current density was 91.82 mA·m-2. Immobilized yeast, on the other hand, led in faster stabilization of the resulted electrical output. When compared to suspension yeast, immobilized yeast removed more COD. The best conditions were reached with a yeast concentration of 10.89% w/v and a wastewater concentration of 56.94%, resulting in a power density and COD removal of 11.25 mW·m-2 and 31.82%, respectively. The effect of yeast and wastewater concentrations on power density and COD removal revealed that the model was well supported by experimental results.


Subject(s)
Bioelectric Energy Sources , Microalgae , Electricity , Electrodes , Saccharomyces cerevisiae , Wastewater
2.
Enzyme Microb Technol ; 149: 109831, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34311895

ABSTRACT

In this study, yeast microbial fuel cells (MFCs) were established as biosensors for in-situ monitoring of dissolved oxygen (DO) levels in environmental waters, with yeast and glucose substrates acting as biocatalyst and fuel, respectively. Diverse environmental factors, such as temperature, pH and conductivity, were considered. The sensor performance was first tested with distilled water with different DO levels ranging from 0 mg/L to 8 mg/L and an external resistance of 1000 Ω. The relationship between DO and current density was non-linear (exponential). This MFC capability was further explored under different environmental conditions (pH, temperature and conductivity), and the current density produced was within the range of 0.14-34.88 mA/m2, which increased with elevated DO concentration. The resulting regression was y = 1.3051e0.3548x, with a regression coefficient (R2) = 0.71, indicating that the MFC-based DO meter was susceptible to interference. When used in environmental water samples, DO measurements using MFC resulted in errors ranging from 6.25 % to 15.15 % when compared with commercial DO meters. The simple yeast-based MFC sensors demonstrate promising prospects for future monitoring in a variety of areas, including developing countries and remote locations.


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques , Biological Oxygen Demand Analysis , Electrodes , Oxygen/analysis , Saccharomyces cerevisiae/genetics
3.
Enzyme Microb Technol ; 106: 1-10, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28859802

ABSTRACT

New laccase-based catalysts to improve oxygen reduction reactions (ORR) are described, and enzymatic biofuel cells (EBCs) adopting these catalysts were developed. These new catalysts are synthesized by combining laccase, poly(ethylenimine) and carbon nanotubes, with attachment of selected elements using the crosslinker, glutaraldehyde (GA). Several characterization approaches are implemented to evaluate catalytic electron transfer in both the absence and presence of mediators and their effects on glucose/O2 biofuel cell performance. [CNT/Lac/PEI/Lac]/GA shows that the best electron transfer rate constants (ks) achieved, in the presence as well as the absence of a mediator, are 8.6 and 1.8s-1. Additionally, [CNT/Lac/PEI/Lac]/GA results in high performance of Maximum Power Density with a value of 0.2mWcm-2. Its relative stability can be maintained up to 83.76% with relative efficiency up to 84.73%, while CNT/Lac gives the lowest performance levels. This indicates that GA induces an improvement in catalytic activity by (i) increasing the amount of immobilized laccase and (ii) strengthening interaction between laccase and PEI. Therefore, it induces excellent redox reactivity, promoting the ORR, and glucose/O2 biofuel cell performance. The effect of pH on catalytic activity is also measured, with pH 5 being optimal.


Subject(s)
Bioelectric Energy Sources , Laccase/metabolism , Nanotubes, Carbon/chemistry , Biocatalysis , Biosensing Techniques , Cross-Linking Reagents , Electron Transport , Enzymes, Immobilized/metabolism , Glucose/metabolism , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Molecular Structure , Nanotechnology , Nanotubes, Carbon/ultrastructure , Oxygen/metabolism
4.
Nanoscale ; 9(5): 1993-2002, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28106225

ABSTRACT

Glucose oxidase (GOx)-catalase co-immobilized catalyst (CNT/PEI/(GOx-Cat)) was synthesized, and its catalytic activity and electrical performance were investigated and compared, whereas the amount of immobilized catalase was optochemically inspected by chemiluminescence (CL) assay. With the characterizations, it was confirmed that the catalase was well immobilized on the CNT/PEI surface, whereas both the GOx and catalase play their roles well in the catalyst. According to the measurements of the current density peak of the flavin adenine dinucleotide (FAD) redox reaction, electron transfer rate, Michaelis-Menten constants and sensitivity, CNT/PEI/(GOx-Cat) shows the best values, and this is attributed to the excellent catalytic activity of GOx and the H2O2 decomposition capability of the catalase. To evaluate the electrical performance, a membraneless glucose biofuel cell (GBFC) adopting the catalyst was operated under physiological conditions and produced a maximum power density (MPD) of 180.8 ± 22.3 µW cm-2, which is the highest value compared to MPDs obtained by adoption of other catalysts. With such results, it was clarified that the CNT/PEI/(GOx-Cat) manufactured by co-immobilization of GOx and catalase leads to enhancements in the catalytic activity and GBFC performance due to the synergetic effects of (i) effective removal of harmful H2O2 moiety by catalase and (ii) superior activation of desirable reactions by GOx.


Subject(s)
Bioelectric Energy Sources , Catalase/chemistry , Enzymes, Immobilized/chemistry , Glucose Oxidase/chemistry , Electrodes , Glucose , Hydrogen Peroxide , Nanotubes, Carbon
5.
Bioresour Technol ; 225: 175-182, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27889476

ABSTRACT

Membraneless microbial fuel cell (MFC) employing new microbial catalyst formed as yeast cultivated from Saccharomyces cerevisiae and carbon nanotube (yeast/CNT) is suggested. To analyze its catalytic activity and performance and stability of MFC, several characterizations are performed. According to the characterizations, the catalyst shows excellent catalytic activities by facile transfer of electrons via reactions of NAD, FAD, cytochrome c and cytochrome a3, while it induces high maximum power density (MPD) (344mW·m-2). It implies that adoption of yeast induces increases in catalytic activity and MFC performance. Furthermore, MPD is maintained to 86% of initial value even after eight days, showing excellent MFC stability.


Subject(s)
Bioelectric Energy Sources , Nanotubes, Carbon/chemistry , Yeasts , Electrons , Hydrophobic and Hydrophilic Interactions , Yeasts/chemistry , Yeasts/metabolism
6.
Sci Rep ; 6: 30128, 2016 07 18.
Article in English | MEDLINE | ID: mdl-27426264

ABSTRACT

Mediatorless and membraneless enzymatic biofuel cells (EBCs) employing new catalytic structure are fabricated. Regarding anodic catalyst, structure consisting of glucose oxidase (GOx), poly(ethylenimine) (PEI) and carbon nanotube (CNT) is considered, while three cathodic catalysts consist of glutaraldehyde (GA), laccase (Lac), PEI and CNT that are stacked together in different ways. Catalytic activities of the catalysts for glucose oxidation and oxygen reduction reactions (GOR and ORR) are evaluated. As a result, it is confirmed that the catalysts work well for promotion of GOR and ORR. In EBC tests, performances of EBCs including 150 µm-thick membrane are measured as references, while those of membraneless EBCs are measured depending on parameters like glucose flow rate, glucose concentration, distance between two electrodes and electrolyte pH. With the measurements, how the parameters affect EBC performance and their optimal conditions are determined. Based on that, best maximum power density (MPD) of membraneless EBC is 102 ± 5.1 µW · cm(-2) with values of 0.5 cc · min(-1) (glucose flow rate), 40 mM (glucose concentration), 1 mm (distance between electrodes) and pH 3. When membrane and membraneless EBCs are compared, MPD of the membraneless EBC that is run at the similar operating condition to EBC including membrane is speculated as about 134 µW · cm(-2).


Subject(s)
Glucose/chemistry , Laccase/chemistry , Oxygen/chemistry , Bioelectric Energy Sources , Catalysis , Electrochemistry/methods , Electrodes , Glucose Oxidase/chemistry , Glutaral/chemistry , Nanotubes, Carbon/chemistry , Oxidation-Reduction , Polyethyleneimine/chemistry
7.
Nanoscale ; 8(17): 9201-10, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27074999

ABSTRACT

New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL(-1), they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL(-1) GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance.


Subject(s)
Bioelectric Energy Sources , Glucose Oxidase/chemistry , Biosensing Techniques , Catalysis , Electrodes , Enzymes, Immobilized/chemistry , Nanotubes, Carbon
SELECTION OF CITATIONS
SEARCH DETAIL
...