Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Open Forum Infect Dis ; 11(7): ofae355, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39015351

ABSTRACT

Background: In recent years, Vietnam has suffered multiple epizootics of influenza in poultry. Methods: From 10 January 2019 to 26 April 2021, we employed a One Health influenza surveillance approach at live bird markets (LBMs) and swine farms in Northern Vietnam. When the COVID-19 pandemic permitted, each month, field teams collected oral secretion samples from poultry and pigs, animal facility bioaerosol and fecal samples, and animal worker nasal washes at 4 LBMs and 5 swine farms across 5 sites. Initially samples were screened with molecular assays followed by culture in embryonated eggs (poultry swabs) or Madin-Darby canine kidney cells (human or swine swabs). Results: Many of the 3493 samples collected had either molecular or culture evidence for influenza A virus, including 314 (37.5%) of the 837 poultry oropharyngeal swabs, 144 (25.1%) of the 574 bioaerosol samples, 438 (34.9%) of the 1257 poultry fecal swab samples, and 16 (1.9%) of the 828 human nasal washes. Culturing poultry samples yielded 454 influenza A isolates, 83 of which were H5, and 70 (84.3%) of these were highly pathogenic. Additionally, a positive human sample had a H9N2 avian-like PB1 gene. In contrast, the prevalence of influenza A in the swine farms was much lower with only 6 (0.4%) of the 1700 total swine farm samples studied, having molecular evidence for influenza A virus. Conclusions: This study suggests that Vietnam's LBMs continue to harbor high prevalences of avian influenza A viruses, including many highly pathogenic H5N6 strains, which will continue to threaten poultry and humans.

2.
medRxiv ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38633782

ABSTRACT

Background: Zoonotic P. knowlesi and P. cynomolgi symptomatic and asymptomatic infections occur across endemic areas of Southeast Asia. Most infections are low-parasitemia, with an unknown proportion below routine microscopy detection thresholds. Molecular surveillance tools optimizing the limit of detection (LOD) would allow more accurate estimates of zoonotic malaria prevalence. Methods: An established ultra-sensitive Plasmodium genus quantitative-PCR (qPCR) assay targeting the 18S rRNA gene underwent LOD evaluation with and without reverse transcription (RT) for P. knowlesi, P. cynomolgi and P. vivax using total nucleic acid preserved (DNA/RNA Shield™) isolates and archived dried blood spots (DBS). LODs for selected P. knowlesi-specific assays, and reference P. vivax- and P. cynomolgi-specific assays were determined with RT. Assay specificities were assessed using clinical malaria samples and malaria-negative controls. Results: The use of reverse transcription improved Plasmodium species detection by up to 10,000-fold (Plasmodium genus), 2759-fold (P. knowlesi), 1000-fold (P. vivax) and 10-fold (P. cynomolgi). The median LOD with RT for the Kamau et al. Plasmodium genus RT-qPCR assay was ≤0.0002 parasites/µL for P. knowlesi and 0.002 parasites/µL for both P. cynomolgi and P. vivax. The LODs with RT for P. knowlesi-specific PCRs were: Imwong et al. 18S rRNA (0.0007 parasites/µL); Divis et al. real-time 18S rRNA (0.0002 parasites/µL); Lubis et al. hemi-nested SICAvar (1.1 parasites/µL) and Lee et al. nested 18S rRNA (11 parasites/µL). The LOD for P. vivax- and P. cynomolgi-specific assays with RT were 0.02 and 0.20 parasites/µL respectively. For DBS P. knowlesi samples the median LOD for the Plasmodium genus qPCR with RT was 0.08, and without RT was 19.89 parasites/uL (249-fold change); no LOD improvement was demonstrated in DBS archived beyond 6 years. The Plasmodium genus and P. knowlesi-assays were 100% specific for Plasmodium species and P. knowlesi detection, respectively, from 190 clinical infections and 48 healthy controls. Reference P. vivax-specific primers demonstrated known cross-reactivity with P. cynomolgi. Conclusion: Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.

3.
Open Forum Infect Dis ; 11(3): ofae062, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38524221

ABSTRACT

Background: Despite its global significance, challenges associated with understanding the epidemiology and accurately detecting, measuring, and characterizing the true burden of seasonal influenza remain in many resource-poor settings. Methods: A prospective observational study was conducted in Cambodia at 28 health facilities between 2007 and 2020 utilizing passive surveillance data of patients presenting with acute undifferentiated febrile illness (AUFI) to describe the prevalence of influenza A and B and characterize associated risk factors and symptoms using a questionnaire. A comparison of rapid influenza diagnostic tests (RIDTs) and real-time reverse transcription polymerase chain reaction (rRT-PCR) results was also conducted. Results: Of 30 586 total participants, 5634 (18.4%) tested positive for either influenza A or B, with 3557 (11.6%) positive for influenza A and 2288 (7.5%) positive for influenza B during the study. Influenza A and B were strongly associated with the rainy season (odds ratio [OR], 2.30; P < .001) and being from an urban area (OR, 1.45; P < .001). Analysis of individual symptoms identified cough (OR, 2.8; P < .001), chills (OR, 1.4; P < .001), and sore throat (OR, 1.4; P < .001) as having the strongest positive associations with influenza among patients with AUFI. Analysis comparing RIDTs and rRT-PCR calculated the overall sensitivity of rapid tests to be 0.492 (95% CI, 0.479-0.505) and specificity to be 0.993 (95% CI, 0.992-0.994) for both influenza type A and B. Conclusions: Findings from this 14-year study include describing the epidemiology of seasonal influenza over a prolonged time period and identifying key risk factors and clinical symptoms associated with infection; we also demonstrate the poor sensitivity of RIDTs in Cambodia.

4.
MethodsX ; 12: 102563, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38328504

ABSTRACT

Mosquito-borne diseases pose a significant threat in many Southeast Asian countries, particularly through the sylvatic cycle, which has a wildlife reservoir in forests and rural areas. Studying the composition and diversity of vectors and pathogen transmission is especially challenging in forests and rural areas due to their remoteness, limited accessibility, lack of power, and underdeveloped infrastructure. This study is based on the WHO mosquito sampling protocol, modifies technical details to support mosquito collection in difficult-to-access and resource-limited areas. Specifically, we describe the procedure for using rechargeable lithium batteries and solar panels to power the mosquito traps, demonstrate a workflow for processing and storing the mosquitoes in a -20 °C freezer, data management tools including microclimate data, and quality assurance processes to ensure the validity and reliability of the results. A pre- and post-test was utilized to measure participant knowledge levels. Additional research is needed to validate this protocol for monitoring vector-borne diseases in hard-to-reach areas within other countries and settings.

5.
MSMR ; 28(6): 16-19, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34379381

ABSTRACT

This report provides mid-season vaccine effectiveness (VE) estimates from the Armed Forces Health Surveillance Division (AFHSD), the DoD Global Respiratory Pathogen Surveillance (DoDGRS) program, and the Naval Health Research Center (NHRC) for the 2019-2020 influenza season. Using a test negative case-control study design, the AFHSD performed a VE analysis for active component service members while the DoDGRS program and NHRC collaborated to perform a VE analysis for DoD beneficiaries and U.S.-Mexico border civilians. Among active component service members, there was low to moderate protection against influenza B, moderate protection against A(H3N2), and non-statistically significant low protection against influenza A overall and A(H1N1). Among DoD beneficiaries and U.S.-Mexico border civilians, there was statistically significant moderate protection against influenza B, influenza A overall, A(H1N1), and A(H3N2).


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Military Personnel , Case-Control Studies , Humans , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Vaccination
6.
Int J Parasitol ; 42(4): 393-400, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22619755

ABSTRACT

The single-celled parasite, Entamoeba histolytica, is an enteric pathogen that ingests bacteria and host cells. Inhibition of phagocytosis renders the parasite avirulent. The ligand/receptor interactions that allow E. histolytica to phagocytose are not well understood. We hypothesised that E. histolytica trophozoites might accomplish ingestion through the utilisation of a scavenger receptor for cholesterol. Here we show that acetylated low density lipoprotein cholesterol was phagocytosed by amoebae via receptor mediated mechanisms. Acetylated low density lipoprotein cholesterol competitively inhibited by 31 ± 1.3% (P < 0.005) the ingestion of Escherichia coli, but not erythrocytes and Jurkat T lymphocytes, suggesting a partially redundant phagocytic pathway for E. coli and cholesterol. Inducible expression ofa signalling-dead dominant-negative version of E. histolytica transmembrane kinase 39 inhibited ingestion of E. coli by 55 ± 3% (P < 0.005) but not LDL particles. We concluded that ingestion of E. coli was regulated by TMK39 and partially shared the acetylated low density lipoprotein cholesterol uptake pathway.


Subject(s)
Cholesterol, LDL/metabolism , Entamoeba histolytica/enzymology , Entamoeba histolytica/physiology , Escherichia coli/isolation & purification , Phagocytosis , Phosphotransferases/metabolism , Protein Transport , Entamoeba histolytica/metabolism , Entamoeba histolytica/microbiology , Erythrocytes/metabolism , Erythrocytes/microbiology , Humans , Jurkat Cells/metabolism , Jurkat Cells/microbiology
7.
J Clin Microbiol ; 50(5): 1762-3, 2012 May.
Article in English | MEDLINE | ID: mdl-22378909

ABSTRACT

A novel fecal antigen detection assay for fresh and frozen human samples that detects but does not differentiate Giardia spp, Cryptosporidium spp, and Entamoeba histolytica, the Tri-Combo parasite screen, was compared to three established enzyme-linked immunosorbent assays (ELISAs) at three international sites. It exhibited 97.9% sensitivity and 97.0% specificity, with positive and negative predictive values of 93.4% and 99.1%, respectively. The Tri-Combo test proved a reliable means to limit the use of individual parasite ELISAs to positive samples.


Subject(s)
Antigens, Protozoan/analysis , Clinical Laboratory Techniques/methods , Cryptosporidium/isolation & purification , Entamoeba histolytica/isolation & purification , Feces/parasitology , Giardia/isolation & purification , Parasitology/methods , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Infant , Male , Middle Aged , Sensitivity and Specificity , Young Adult
8.
Future Microbiol ; 6(12): 1501-19, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22122445

ABSTRACT

The unicellular parasite Entamoeba histolytica, the causative agent of the human disease amebiasis, has traditionally been distinguished from its nonpathogenic cousin Entamoeba dispar by its propensity for the ingestion of erythrocytes. This classic feature, along with the parasite's ability to cause extensive host cell death, are critical mechanisms of pathogenesis during human infection. Recent advances have led to a greater understanding of the molecular components that allow E. histolytica to kill and phagocytose extracellular targets during human infection and include detailed studies of the role of the parasite's cysteine proteinases and other effectors of cytotoxicity, as well as the mechanisms of ligand recognition, signaling and intracellular trafficking during phagocytosis.


Subject(s)
Cell Adhesion , Entamoeba histolytica/immunology , Entamoeba histolytica/pathogenicity , Phagocytosis , Cysteine Proteases/metabolism , Entamoeba histolytica/enzymology , Humans , Models, Biological , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...