Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Small ; 19(51): e2207216, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36703534

ABSTRACT

Tackling the current problem of antimicrobial resistance (AMR) requires fast, inexpensive, and effective methods for controlling and detecting antibiotics in diverse samples at the point of interest. Cost-effective, disposable, point-of-care electrochemical biosensors are a particularly attractive option. However, there is a need for conductive and versatile carbon-based materials and inks that enable effective bioconjugation under mild conditions for the development of robust, sensitive, and selective devices. This work describes a simple and fast methodology to construct an aptasensor based on a novel graphene derivative equipped with alkyne groups prepared via fluorographene chemistry. Using click chemistry, an aptamer is immobilized and used as a successful platform for the selective determination of ampicillin in real samples in the presence of interfering molecules. The electrochemical aptasensor displayed a detection limit of 1.36 nM, high selectivity among other antibiotics, the storage stability of 4 weeks, and is effective in real samples. Additionally, structural and docking simulations of the aptamer shed light on the ampicillin binding mechanism. The versatility of this platform opens up wide possibilities for constructing a new class of aptasensor based on disposable screen-printed carbon electrodes usable in point-of-care devices.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Graphite/chemistry , Click Chemistry , Alkynes , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods , Carbon/chemistry , Biosensing Techniques/methods , Electrodes , Gold/chemistry , Ampicillin , Anti-Bacterial Agents , Limit of Detection
2.
Chem Commun (Camb) ; 58(60): 8396-8399, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35792707

ABSTRACT

A non-metal covalent hybrid of fullerene and graphene was synthesized in one step via fluorographene chemistry. Its electrocatalytic performance for the hydrogen evolution reaction and durability was ascribed to intrahybrid charge-transfer phenomena, exploiting the electron-accepting properties of C60 and the high conductivity and large surface area of graphene.

3.
Small ; 18(4): e2104628, 2022 01.
Article in English | MEDLINE | ID: mdl-34894080

ABSTRACT

Metal-organic frameworks (MOFs) materials constructed by the coordination chemistry of metal ions and organic ligands are important members of the crystalline materials family. Owing to their exceptional properties, for example, high porosity, tunable pore size, and large surface area, MOFs have been applied in several fields such as gas or liquid adsorbents, sensors, batteries, and supercapacitors. However, poor conductivity and low stability hamper their potential applications in several attractive fields such as energy and gas storage. The integration of MOFs with carbon nanotubes (CNTs), a well-established carbon allotrope that exhibits high conductivity and stability, has been proposed as an efficient strategy to overcome such limitations. By combining the advantages of MOFs and CNTs, a wide variety of composites can be prepared with properties superior to their parent materials. This review provides a comprehensive summary of the preparation of CNT@MOF composites and focuses on their recent applications in several important fields, such as water purification, gas storage and separation, sensing, electrocatalysis, and energy storage (supercapacitors and batteries). Future challenges and prospects for CNT@MOF composites are also discussed.


Subject(s)
Metal-Organic Frameworks , Nanotubes, Carbon , Electric Conductivity , Ions , Metal-Organic Frameworks/chemistry , Metals/chemistry
4.
Chem Commun (Camb) ; 56(13): 1936-1939, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32002534

ABSTRACT

Double functionalized graphene derivatives were synthetized by a one-pot reaction of fluorographene with organometallic nucleophiles. Their nucleophilicity governed the preference for grafting and was utilized for tuning the functionalization. This approach paves the way toward the facile, up-scalable and controllable multifunctionalization of graphene.

5.
Chemistry ; 26(29): 6518-6524, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32027766

ABSTRACT

Fluorographene, a two-dimensional derivative of graphene, is an excellent starting material for the synthesis of graphene derivatives. In this work, a one-step, substrate-free method for the asymmetric functionalization of fluorographene layers with hydroxyl groups by a facile nucleophilic substitution reaction is reported. Such a chemical modification occurs in a biphasic aqueous-organic system under mild conditions, leading to Janus graphene nanosheets functionalized by hydroxyl groups on one side and retaining fluorine atoms on the other. The reported experimental route paves the way for two-dimensional bifacial graphene templates, thus broadening the application potential of graphene materials.

6.
Chem Commun (Camb) ; 55(8): 1088-1091, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30620024

ABSTRACT

We report successful grafting of alkynyl groups onto graphene via the Sonogashira reaction between fluorographene and terminal alkynes. Theoretical calculations revealed that fluorographene can efficiently bind and oxidize the palladium catalyst on electrophilic sites activated by fluorine atoms. This paves the way towards conductive and mechanically robust 3D covalent networks.

7.
Appl Mater Today ; 9: 60-70, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29238741

ABSTRACT

Fluorographene, formally a two-dimensional stoichiometric graphene derivative, attracted remarkable attention of the scientific community due to its extraordinary physical and chemical properties. We overview the strategies for the preparation of fluorinated graphene derivatives, based on top-down and bottom-up approaches. The physical and chemical properties of fluorographene, which is considered as one of the thinnest insulators with a wide electronic band gap, are presented. Special attention is paid to the rapidly developing chemistry of fluorographene, which was advanced in the last few years. The unusually high reactivity of fluorographene, which can be chemically considered perfluorinated hydrocarbon, enables facile and scalable access to a wide portfolio of graphene derivatives, such as graphene acid, cyanographene and allyl-graphene. Finally, we summarize the so far reported applications of fluorographene and fluorinated graphenes, spanning from sensing and bioimaging to separation, electronics and energy technologies.

8.
Int J Pharm ; 528(1-2): 429-439, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28627453

ABSTRACT

The aim of this study is to design and develop delivery platforms made of liposomes and multi-walled carbon nanotubes (MWCNTs). We used different lipids with different main transition temperature (Tm) and differently functionalized MWCNTs with organic addends possessing either positive or negative charge. The phospholipids used for the formulations were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (Tm=41°C) and L-α-phosphatidylcholine, hydrogenated Soy (HSPC) (Tm=53°C). By Differential Scanning Calorimetry (DSC), we studied the interaction between the DPPC and HSPC bilayers and MWCNTs. Liposome-MWCNTs delivery platforms prepared according to the protocol used in the literature. We used dynamic and electrophoretic light scattering in order to investigate the physicochemical characteristics of these mixed nanocarriers. The presence of MWCNTs causes alterations of the size of the conventional HSPC and DPPC liposomes. The ζ-potential values of mixed nanocarriers are near zero. This observation indicates the effective incorporation of MWCNTs into the lipid bilayer of liposomes. Fluorescence spectroscopy has been utilized to exact some qualitative information on the internal nanostructure and nanoenvironment of the lipid/carbon nanotube mixed structures. Finally, we conclude that we successfully prepare and completely characterize mixed nanocarriers composed of lipids and MWCNTs, with low toxicity as indicated by in vitro screening.


Subject(s)
Drug Carriers/chemistry , Liposomes/chemistry , Nanotubes, Carbon/chemistry , Phospholipids/chemistry
10.
ACS Nano ; 11(3): 2982-2991, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28208019

ABSTRACT

Efficient and selective methods for covalent derivatization of graphene are needed because they enable tuning of graphene's surface and electronic properties, thus expanding its application potential. However, existing approaches based mainly on chemistry of graphene and graphene oxide achieve only limited level of functionalization due to chemical inertness of the surface and nonselective simultaneous attachment of different functional groups, respectively. Here we present a conceptually different route based on synthesis of cyanographene via the controllable substitution and defluorination of fluorographene. The highly conductive and hydrophilic cyanographene allows exploiting the complex chemistry of -CN groups toward a broad scale of graphene derivatives with very high functionalization degree. The consequent hydrolysis of cyanographene results in graphene acid, a 2D carboxylic acid with pKa of 5.2, showing excellent biocompatibility, conductivity and dispersibility in water and 3D supramolecular assemblies after drying. Further, the carboxyl groups enable simple, tailored and widely accessible 2D chemistry onto graphene, as demonstrated via the covalent conjugation with a diamine, an aminothiol and an aminoalcohol. The developed methodology represents the most controllable, universal and easy to use approach toward a broad set of 2D materials through consequent chemistries on cyanographene and on the prepared carboxy-, amino-, sulphydryl-, and hydroxy- graphenes.

SELECTION OF CITATIONS
SEARCH DETAIL
...