Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 110(7): 1964-72, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23334838

ABSTRACT

Increasingly high cell density, high product titer cell cultures containing mammalian cells are being used for the production of recombinant proteins. These high productivity cultures are placing a larger burden on traditional downstream clarification and purification operations due to higher product and impurity levels. Controlled flocculation and precipitation of mammalian cell culture suspensions by acidification or using polymeric flocculants have been employed to enhance clarification throughput and downstream filtration operations. While flocculation is quite effective in agglomerating cell debris and process related impurities such as (host cell) proteins and DNA, the resulting suspension is generally not easily separable solely using conventional depth filtration techniques. As a result, centrifugation is often used for clarification of cells and cell debris before filtration, which can limit process configurations and flexibility due to the investment and fixed nature of a centrifuge. To address this challenge, novel depth filter designs were designed which results in improved primary and secondary direct depth filtration of flocculated high cell density mammalian cell cultures systems feeds, thereby providing single-use clarification solution. A framework is presented here for optimizing the particle size distribution of the mammalian cell culture systems with the pore size distribution of the gradient depth filter using various pre-treatment conditions resulting in increased depth filter media utilization and improved clarification capacity. Feed conditions were optimized either by acidification or by polymer flocculation which resulted in the increased average feed particle-size and improvements in throughput with improved depth filters for several mammalian systems.


Subject(s)
Biotechnology/methods , Filtration/methods , Recombinant Proteins/isolation & purification , Animals , CHO Cells , Cell Aggregation , Cell Count , Cell Culture Techniques , Cricetulus
2.
Biotechnol Bioeng ; 108(1): 50-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20812295

ABSTRACT

The processing of recombinant proteins from high cell density, high product titer cell cultures containing mammalian cells is commonly performed using tangential flow microfiltration (MF). However, the increased cellular debris present in these complex feed streams can prematurely foul the membrane, adversely impacting MF capacity and throughput. In addition, high cell density cell culture streams introduce elevated levels of process-related impurities, which increase the burden on subsequent purification operations to remove these complex media components and impurities. To address this challenge, an evaluation of mammalian cell culture broth buffer properties was examined to determine if enhanced impurity removal and clarification performance could be achieved. A framework is presented here for establishing optimized mammalian cell culture buffer conditions, involving trade-offs between product recovery and purification and improved clarification at manufacturing-scale production. A reduction in cell culture broth pH to 4.7-5.0 induced flocculation and impurity precipitation which increased the average feed particle-size. These conditions led to enhanced impurity removal and improved MF throughput and filter capacity for several mammalian systems. Feed conditions were further optimized by controlling ionic composition along with pH to improve product recovery from high cell density/high product titer cell cultures.


Subject(s)
Bioreactors , Culture Media/chemistry , Immunoglobulin G/isolation & purification , Recombinant Proteins/isolation & purification , Animals , Buffers , CHO Cells , Cricetinae , Cricetulus , Hydrogen-Ion Concentration , Immunoglobulin G/biosynthesis , Recombinant Proteins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...