Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38979265

ABSTRACT

Protein phosphorylation regulates many steps in the cell division process including cytokinesis. In the fission yeast S. pombe, the anillin-like protein Mid1 sets the cell division plane and is regulated by phosphorylation. Multiple protein kinases act on Mid1, but no protein phosphatases have been shown to regulate Mid1. Here, we discovered that the conserved protein phosphatase PP2A-B56 is required for proper cytokinesis by promoting Mid1 protein levels. We find that par1Δ cells lacking the primary B56 subunit divide asymmetrically due to the assembly of misplaced cytokinetic rings that slide toward cell tips. These par1Δ mutants have reduced whole-cell levels of Mid1 protein, leading to reduced Mid1 at the cytokinetic ring. Restoring proper Mid1 expression suppresses par1Δ cytokinesis defects. This work identifies a new PP2A-B56 pathway regulating cytokinesis through Mid1, with implications for control of cytokinesis in other organisms.

2.
PLoS Biol ; 20(11): e3001885, 2022 11.
Article in English | MEDLINE | ID: mdl-36441764

ABSTRACT

N6-methyladenosine (m6A) modification of RNA regulates normal and cancer biology, but knowledge of its function on long noncoding RNAs (lncRNAs) remains limited. Here, we reveal that m6A regulates the breast cancer-associated human lncRNA HOTAIR. Mapping m6A in breast cancer cell lines, we identify multiple m6A sites on HOTAIR, with 1 single consistently methylated site (A783) that is critical for HOTAIR-driven proliferation and invasion of triple-negative breast cancer (TNBC) cells. Methylated A783 interacts with the m6A "reader" YTHDC1, promoting chromatin association of HOTAIR, proliferation and invasion of TNBC cells, and gene repression. A783U mutant HOTAIR induces a unique antitumor gene expression profile and displays loss-of-function and antimorph behaviors by impairing and, in some cases, causing opposite gene expression changes induced by wild-type (WT) HOTAIR. Our work demonstrates how modification of 1 base in an lncRNA can elicit a distinct gene regulation mechanism and drive cancer-associated phenotypes.


Subject(s)
Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...