Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1272021, 2023.
Article in English | MEDLINE | ID: mdl-38022600

ABSTRACT

Introduction: Preeclampsia is responsible for more than 70 000 and 500 000 maternal and fetal deaths, respectively each year. Incomplete remodelling of the spiral arteries in placenta is the most accepted theory of preeclampsia pathogenesis. However, the process is complexed with immunological background, as pregnancy resembles allograft transplantation. Fetus expresses human leukocyte antigens (HLA) inherited from both parents, thus is semiallogeneic to the maternal immune system. Therefore, induction of fetal tolerance is crucial for physiological outcome of pregnancy. Noteworthy, the immunogenicity of discordant HLA antigens is determined by functional epitopes called eplets, which are continuous and discontinuous short sequences of amino acids. This way various HLA molecules may express the same eplet and some HLA incompatibilities can be more immunogenic due to different eplet combination. Therefore, we hypothesized that maternal- fetal HLA incompatibility may be involved in the pathogenesis of gestational hypertension and its progression to preeclampsia. We also aimed to test if particular maternal-fetal eplet mismatches are more prone for induction of anti- fetal HLA antibodies in gestational hypertension and preeclampsia. Methods: High resolution next-generation sequencing of HLA-A, -B, -C, -DQB1 and -DRB1 antigens was performed in mothers and children from physiological pregnancies (12 pairs) and from pregnancies complicated with gestational hypertension (22 pairs) and preeclampsia (27 pairs). In the next step HLA eplet identification and analysis of HLA eplet incompatibilities was performed with in silico approach HLAMatchmaker algorithm. Simultaneously maternal sera were screened for anti-fetal HLA class I, class II and anti-MICA antibodies with Luminex, and data were analyzed with HLA-Fusion software. Results: We observed that high HLA-C, -B, and DQB1 maternal-fetal eplet compatibility was associated with severe preeclampsia (PE) manifestation. Both quantity and quality of HLA epletmismatches affected the severity of PE. Mismatches in HLA-B eplets: 65QIA+76ESN, 70IAO, 180E, HLA-C eplets: 193PL3, 267QE, and HLA-DRB1 eplet: 16Y were associated with a mild outcome of preeclampsia if the complication occurred. Conclusions: High HLA-C, HLA-DQB1 and HLA-B eplet compatibility between mother and child is associated with severe manifestation of preeclampsia. Both quantity and quality of maternal-fetal HLA eplet mismatches affects severity of preeclampsia.


Subject(s)
Hypertension, Pregnancy-Induced , Pre-Eclampsia , Pregnancy , Female , Child , Humans , HLA-C Antigens , HLA Antigens , Fetus , HLA-B Antigens
2.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806034

ABSTRACT

Natural killer cells are innate lymphocytes with the ability to lyse tumour cells depending on the balance of their activating and inhibiting receptors. Growing numbers of clinical trials show promising results of NK cell-based immunotherapies. Unlike T cells, NK cells can lyse tumour cells independent of antigen presentation, based simply on their activation and inhibition receptors. Various strategies to improve NK cell-based therapies are being developed, all with one goal: to shift the balance to activation. In this review, we discuss the current understanding of ways NK cells can lyse tumour cells and all the inhibitory signals stopping their cytotoxic potential.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Humans , Immunotherapy , Immunotherapy, Adoptive/methods , Killer Cells, Natural , Neoplasms/therapy , T-Lymphocytes
3.
Talanta ; 233: 122568, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34215064

ABSTRACT

Proteomics of human tissues and isolated cellular subpopulations create new opportunities for therapy and monitoring of a patients' treatment in the clinic. Important considerations in such analysis include recovery of adequate amounts of protein for analysis and reproducibility in sample collection. In this study we compared several protocols for proteomic sample preparation: i) filter-aided sample preparation (FASP), ii) in-solution digestion (ISD) and iii) a pressure-assisted digestion (PCT) method. PCT method is known for already a decade [1], however it is not widely used in proteomic research. We assessed protocols for proteome profiling of isolated immune cell subsets and formalin-fixed paraffin embedded (FFPE) tissue samples. Our results show that the ISD method has very good efficiency of protein and peptide identification from the whole proteome, while the FASP method is particularly effective in identification of membrane proteins. Pressure-assisted digestion methods generally provide lower numbers of protein/peptide identifications, but have gained in popularity due to their shorter digestion time making them considerably faster than for ISD or FASP. Furthermore, PCT does not result in substantial sample loss when applied to samples of 50 000 cells. Analysis of FFPE tissues shows comparable results. ISD method similarly yields the highest number of identifications. Furthermore, proteins isolated from FFPE samples show a significant reduction of cleavages at lysine sites due to chemical modifications with formaldehyde-such as methylation (+14 Da) being among the most common. The data we present will be helpful for making decisions about the robust preparation of clinical samples for biomarker discovery and studies on pathomechanisms of various diseases.


Subject(s)
Proteome , Proteomics , Digestion , Formaldehyde , Humans , Paraffin Embedding , Reproducibility of Results
4.
RNA Biol ; 18(11): 1524-1539, 2021 11.
Article in English | MEDLINE | ID: mdl-33593231

ABSTRACT

RNA editing is one of the most prevalent and abundant forms of post-transcriptional RNA modification observed in normal physiological processes and often aberrant in diseases including cancer. RNA editing changes the sequences of mRNAs, making them different from the source DNA sequence. Edited mRNAs can produce editing-recoded protein isoforms that are functionally different from the corresponding genome-encoded protein isoforms. The major type of RNA editing in mammals occurs by enzymatic deamination of adenosine to inosine (A-to-I) within double-stranded RNAs (dsRNAs) or hairpins in pre-mRNA transcripts. Enzymes that catalyse these processes belong to the adenosine deaminase acting on RNA (ADAR) family. The vast majority of knowledge on the RNA editing landscape relevant to human disease has been acquired using in vitro cancer cell culture models. The limitation of such in vitro models, however, is that the physiological or disease relevance of results obtained is not necessarily obvious. In this review we focus on discussing in vivo occurring RNA editing events that have been identified in human cancer tissue using samples surgically resected or clinically retrieved from patients. We discuss how RNA editing events occurring in tumours in vivo can identify pathological signalling mechanisms relevant to human cancer physiology which is linked to the different stages of cancer progression including initiation, promotion, survival, proliferation, immune escape and metastasis.


Subject(s)
Adenosine/genetics , Carcinogenesis/pathology , Inosine/genetics , Neoplasms/pathology , RNA Editing , RNA, Double-Stranded/genetics , RNA-Binding Proteins/metabolism , Animals , Carcinogenesis/genetics , Humans , Neoplasms/genetics , Neoplasms/metabolism , RNA-Binding Proteins/genetics
5.
Cancers (Basel) ; 12(3)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32183246

ABSTRACT

In recent years, much research has been focused on the field of adoptive cell therapies (ACT) that use native or genetically modified T cells as therapeutic tools. Immunotherapy with T cells expressing chimeric antigen receptors (CARs) demonstrated great success in the treatment of haematologic malignancies, whereas adoptive transfer of autologous tumour infiltrating lymphocytes (TILs) proved to be highly effective in metastatic melanoma. These encouraging results initiated many studies where ACT was tested as a treatment for various solid tumours. In this review, we provide an overview of the challenges of T cell-based immunotherapies of solid tumours. We describe alternative approaches for choosing the most efficient T cells for cancer treatment in terms of their tumour-specificity and phenotype. Finally, we present strategies for improvement of anti-tumour potential of T cells, including combination therapies.

6.
Am J Hum Genet ; 96(2): 245-57, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25597510

ABSTRACT

We studied a group of individuals with elevated urinary excretion of 3-methylglutaconic acid, neutropenia that can develop into leukemia, a neurological phenotype ranging from nonprogressive intellectual disability to a prenatal encephalopathy with progressive brain atrophy, movement disorder, cataracts, and early death. Exome sequencing of two unrelated individuals and subsequent Sanger sequencing of 16 individuals with an overlapping phenotype identified a total of 14 rare, predicted deleterious alleles in CLPB in 14 individuals from 9 unrelated families. CLPB encodes caseinolytic peptidase B homolog ClpB, a member of the AAA+ protein family. To evaluate the relevance of CLPB in the pathogenesis of this syndrome, we developed a zebrafish model and an in vitro assay to measure ATPase activity. Suppression of clpb in zebrafish embryos induced a central nervous system phenotype that was consistent with cerebellar and cerebral atrophy that could be rescued by wild-type, but not mutant, human CLPB mRNA. Consistent with these data, the loss-of-function effect of one of the identified variants (c.1222A>G [p.Arg408Gly]) was supported further by in vitro evidence with the mutant peptides abolishing ATPase function. Additionally, we show that CLPB interacts biochemically with ATP2A2, known to be involved in apoptotic processes in severe congenital neutropenia (SCN) 3 (Kostmann disease [caused by HAX1 mutations]). Taken together, mutations in CLPB define a syndrome with intellectual disability, congenital neutropenia, progressive brain atrophy, movement disorder, cataracts, and 3-methylglutaconic aciduria.


Subject(s)
Abnormalities, Multiple/genetics , Brain/pathology , Endopeptidase Clp/genetics , Intellectual Disability/genetics , Metabolism, Inborn Errors/genetics , Abnormalities, Multiple/pathology , Adenosine Triphosphatases/metabolism , Animals , Atrophy/genetics , Atrophy/pathology , Base Sequence , Cataract/genetics , Cataract/pathology , Endopeptidase Clp/metabolism , Exome/genetics , Humans , Intellectual Disability/pathology , Metabolism, Inborn Errors/pathology , Molecular Sequence Data , Movement Disorders/genetics , Movement Disorders/pathology , Neutropenia/genetics , Neutropenia/pathology , Polymorphism, Single Nucleotide/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sequence Analysis, DNA , Zebrafish
7.
J Biol Chem ; 288(4): 2857-69, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-23233670

ABSTRACT

Hsp100 chaperones cooperate with the Hsp70 chaperone system to disaggregate and reactivate heat-denatured aggregated proteins to promote cell survival after heat stress. The homology models of Hsp100 disaggregases suggest the presence of a conserved network of ionic interactions between the first nucleotide binding domain (NBD1) and the coiled-coil middle subdomain, the signature domain of disaggregating chaperones. Mutations intended to disrupt the putative ionic interactions in yeast Hsp104 and bacterial ClpB disaggregases resulted in remarkable changes of their biochemical properties. These included an increase in ATPase activity, a significant increase in the rate of in vitro substrate renaturation, and partial independence from the Hsp70 chaperone in disaggregation. Paradoxically, the increased activities resulted in serious growth impediments in yeast and bacterial cells instead of improvement of their thermotolerance. Our results suggest that this toxic activity is due to the ability of the mutated disaggregases to unfold independently from Hsp70, native folded proteins. Complementary changes that restore particular salt bridges within the suggested network suppressed the toxic effects. We propose a novel structural aspect of Hsp100 chaperones crucial for specificity and efficiency of the disaggregation reaction.


Subject(s)
HSP70 Heat-Shock Proteins/chemistry , Heat-Shock Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphatases/chemistry , Amino Acid Sequence , Endopeptidase Clp , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Green Fluorescent Proteins/chemistry , Heat-Shock Proteins/metabolism , Ions , Models, Molecular , Molecular Conformation , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Protein Denaturation , Protein Structure, Tertiary , Saccharomyces cerevisiae Proteins/chemistry , Sequence Homology, Amino Acid , Thermus thermophilus/metabolism
8.
J Biol Chem ; 287(4): 2843-53, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22139842

ABSTRACT

Small heat shock proteins are ubiquitous molecular chaperones that, during cellular stress, bind to misfolded proteins and maintain them in a refolding competent state. Two members of the small heat shock protein family, IbpA and IbpB, are present in Escherichia coli. Despite 48% sequence identity, the proteins have distinct activities in promoting protein disaggregation. Cooperation between IbpA and IbpB is crucial for prevention of the irreversible aggregation of proteins. In this study, we investigated the importance of the N- and C-terminal regions of IbpA for self-oligomerization and chaperone functions. Deletion of either the N- or C-terminal region of IbpA resulted in a defect in the IbpA fibril formation process. The deletions also impaired IbpA chaperone function, defined as the ability to stabilize, in cooperation with IbpB, protein aggregates in a disaggregation-competent state. Our results show that the defect in chaperone function, observed in truncated versions of IbpA, is due to the inability of these proteins to interact with substrate proteins and consequently to change the properties of aggregates. At the same time, these versions of IbpA interact with IbpB similarly to the wild type protein. Competition experiments performed with the pC peptide, which corresponds to the IbpA C terminus, suggested the importance of IbpA intermolecular interactions in the stabilization of aggregates in a state competent for disaggregation. Our results suggest that these interactions are not only dependent on the universally conserved IEI motif but also on arginine 133 neighboring the IEI motif. IbpA mutated at arginine 133 to alanine lacked chaperone activity.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Heat-Shock Proteins/metabolism , Multiprotein Complexes/metabolism , Protein Multimerization/physiology , Amino Acid Motifs , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/genetics , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Protein Structure, Quaternary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...