Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasound Obstet Gynecol ; 57(1): 52-61, 2021 01.
Article in English | MEDLINE | ID: mdl-33094535

ABSTRACT

OBJECTIVE: To develop a new competing-risks model for the prediction of a small-for-gestational-age (SGA) neonate, based on maternal factors and biophysical and biochemical markers at 11-13 weeks' gestation. METHODS: This was a prospective observational study in 60 875 women with singleton pregnancy undergoing routine ultrasound examination at 11 + 0 to 13 + 6 weeks' gestation. All pregnancies had pregnancy-associated plasma protein-A and placental growth factor (PlGF) measurements, 59 001 had uterine artery pulsatility index (UtA-PI) measurements and 58 479 had mean arterial pressure measurements; 57 131 cases had complete data for all biomarkers. We used a previously developed competing-risks model for the joint distribution of gestational age (GA) at delivery and birth-weight Z-score, according to maternal demographic characteristics and medical history. The likelihoods of the biophysical markers were developed by fitting folded-plane regression models, a technique that has already been used in previous studies for the likelihoods of biochemical markers. The next step was to modify the prior distribution by the likelihood, according to Bayes' theorem, to obtain individualized distributions for GA at delivery and birth-weight Z-score. We used the 57 131 cases with complete data to assess the discrimination and calibration of the model for predicting SGA with, without or independently of pre-eclampsia, by different combinations of maternal factors and biomarkers. RESULTS: The distribution of biomarkers, conditional to both GA at delivery and birth-weight Z-score, was best described by folded-plane regression models. These continuous two-dimensional likelihoods update the joint distribution of birth-weight Z-score and GA at delivery that has resulted from a competing-risks approach; this method allows application of user-defined cut-offs. The best biophysical predictor of preterm SGA was UtA-PI and the best biochemical marker was PlGF. The prediction of SGA was consistently better for increasing degree of prematurity, greater severity of smallness, coexistence of PE and increasing number of biomarkers. The combination of maternal factors with all biomarkers predicted 34.3%, 48.6% and 59.1% of all cases of a SGA neonate with birth weight < 10th percentile delivered at ≥ 37, < 37 and < 32 weeks' gestation, at a 10% false-positive rate. The respective values for birth weight < 3rd percentile were 39.9%, 53.2% and 64.4%, and for birth weight < 3rd percentile with pre-eclampsia they were 46.3%, 66.8% and 80.4%. The new model was well calibrated. CONCLUSIONS: This study has presented a single continuous two-dimensional model for prediction of SGA for any desired cut-offs of smallness and GA at delivery, laying the ground for a personalized antenatal plan for predicting and managing SGA, in the milieu of a new inverted pyramid of prenatal care. © 2020 International Society of Ultrasound in Obstetrics and Gynecology.


Subject(s)
Fetal Growth Retardation/diagnosis , Infant, Small for Gestational Age/blood , Uterine Artery/diagnostic imaging , Adult , Bayes Theorem , Biomarkers/blood , Female , Fetal Growth Retardation/blood , Gestational Age , Humans , Infant, Newborn , Placenta Growth Factor/blood , Pregnancy , Pregnancy-Associated Plasma Protein-A/analysis , Prospective Studies , Pulsatile Flow , Risk Assessment , Ultrasonography, Prenatal
2.
Med Hypotheses ; 104: 97-100, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28673602

ABSTRACT

Pelvic organ prolapse (POP) is a major health problem that affects many women with potentially severe physical and psychological impact as well as impact on their daily activities, and quality of life. Several surgical techniques have been proposed for the treatment of POP. The FDA has published documents that refer to concerns about the use of synthetic meshes for the treatment of prolapse, in view of the severe complications that may occur. These led to hesitancy in use of these meshes and partial increase in use of other biological grafts such as allografts and xenografts. Although there seems to be an increasing tendency to use grafts in pelvic floor reconstructive procedures due to lower risks of erosion than synthetic meshes, there are inconclusive data to support the routine use of biological grafts in pelvic organ prolapse treatment. In light of these observations new strategies are needed for the treatment of prolapse. Platelet rich plasma (PRP) is extremely rich in growth factors and cytokines, which regulate tissue reconstruction and has been previously used in orthopaedics and plastic surgery. To date, however, it has never been used in urogynaecology and there is no evidence to support or oppose its use in women who suffer from POP, due to uterine ligament defects. PRP is a relatively inexpensive biological material and easily produced directly from patients' blood and is, thus, superior to synthetic materials in terms of potential adverse effects such as foreign body reaction. In the present article we summarize the existing evidence, which supports the conduct of animal experimental and clinical studies to elucidate the potential role of PRP in treating POP by restoring the anatomy and function of ligament support.


Subject(s)
Platelet-Rich Plasma/metabolism , Uterine Prolapse/therapy , Allografts , Animals , Biomechanical Phenomena , Cytokines/metabolism , Female , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Ligaments/metabolism , Models, Animal , Orthopedics , Pelvic Floor/surgery , Pelvic Organ Prolapse/therapy , Uterus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...