Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 381(6663): 1176-1182, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37708272

ABSTRACT

Neuronal cell loss is a defining feature of Alzheimer's disease (AD), but the underlying mechanisms remain unclear. We xenografted human or mouse neurons into the brain of a mouse model of AD. Only human neurons displayed tangles, Gallyas silver staining, granulovacuolar neurodegeneration (GVD), phosphorylated tau blood biomarkers, and considerable neuronal cell loss. The long noncoding RNA MEG3 was strongly up-regulated in human neurons. This neuron-specific long noncoding RNA is also up-regulated in AD patients. MEG3 expression alone was sufficient to induce necroptosis in human neurons in vitro. Down-regulation of MEG3 and inhibition of necroptosis using pharmacological or genetic manipulation of receptor-interacting protein kinase 1 (RIPK1), RIPK3, or mixed lineage kinase domain-like protein (MLKL) rescued neuronal cell loss in xenografted human neurons. This model suggests potential therapeutic approaches for AD and reveals a human-specific vulnerability to AD.


Subject(s)
Alzheimer Disease , Necroptosis , Neurons , RNA, Long Noncoding , Animals , Humans , Mice , Alzheimer Disease/pathology , Heterografts , Necroptosis/genetics , Neurons/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Protein Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
2.
Mol Neurodegener ; 15(1): 3, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31915042

ABSTRACT

The amyloid-ß (Aß) peptide, the primary constituent of amyloid plaques found in Alzheimer's disease (AD) brains, is derived from sequential proteolytic processing of the Amyloid Precursor Protein (APP). However, the contribution of different cell types to Aß deposition has not yet been examined in an in vivo, non-overexpression system. Here, we show that endogenous APP is highly expressed in a heterogeneous subset of GABAergic interneurons throughout various laminae of the hippocampus, suggesting that these cells may have a profound contribution to AD plaque pathology. We then characterized the laminar distribution of amyloid burden in the hippocampus of an APP knock-in mouse model of AD. To examine the contribution of GABAergic interneurons to plaque pathology, we blocked Aß production specifically in these cells using a cell type-specific knock-out of BACE1. We found that during early stages of plaque deposition, interneurons contribute to approximately 30% of the total plaque load in the hippocampus. The greatest contribution to plaque load (75%) occurs in the stratum pyramidale of CA1, where plaques in human AD cases are most prevalent and where pyramidal cell bodies and synaptic boutons from perisomatic-targeting interneurons are located. These findings reveal a crucial role of GABAergic interneurons in the pathology of AD. Our study also highlights the necessity of using APP knock-in models to correctly evaluate the cellular contribution to amyloid burden since APP overexpressing transgenic models drive expression in cell types according to the promoter and integration site and not according to physiologically relevant expression mechanisms.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , GABAergic Neurons/pathology , Hippocampus/pathology , Interneurons/pathology , Plaque, Amyloid/pathology , Animals , Female , Gene Knock-In Techniques , Humans , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...