Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cancers (Basel) ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38730698

ABSTRACT

Previous studies have indicated a potential role of diet in the pathogenesis of renal cell carcinoma (RCC). Recently, circular bovine meat and milk factor (BMMF) DNAs have been identified in peritumoral tissues of human colon and breast cancers. Here, we investigated the prevalence of the DNA of these novel human pathogenic infectious agents in RCC and adjacent peritumoral renal tissues. DNA was extracted from formalin-fixed and paraffin-embedded (FFPE) RCC and peritumoral kidney tissues, including a test (n = 11) and a validation (n = 152) collection. BMMF1 and BMMF2 consensus primers were designed to screen for the presence of BMMF1- and BMMF2-like DNA. In addition, BMMF-specific PCR was performed on selected cases to test for the presence of additional regions of BMMF1 and BMMF2 genomes. A reference collection of hepatocellular carcinomas (HCCs; n = 60) and adjacent peritumoral liver tissues (n = 50) was also included. Our results demonstrated that BMMF1 and BMMF2 DNAs are frequently found in human RCC tissues and are particularly more prevalent in peritumoral kidney tissues. Of note, BMMF1 and BMMF2 genotype heterogeneity was higher in peritumoral kidney tissues compared to RCC tissues. This is the first study to directly test human FFPE tissues for BMMF1- and BMMF2-like DNA using consensus PCR and demonstrate BMMF DNA in neoplastic and peritumoral kidney tissues. The findings are in line with the recently proposed indirect etiopathogenetic role of BMMFs in, e.g., colorectal carcinogenesis. Follow-up studies are needed to explore the potential role of BMMFs in the etiopathogenesis of RCC.

2.
Leukemia ; 38(5): 1086-1098, 2024 May.
Article in English | MEDLINE | ID: mdl-38600314

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) constitutes a rare and aggressive malignancy originating from plasmacytoid dendritic cells (pDCs) with a primarily cutaneous tropism followed by dissemination to the bone marrow and other organs. We conducted a genome-wide analysis of the tumor methylome in an extended cohort of 45 BPDCN patients supplemented by WES and RNA-seq as well as ATAC-seq on selected cases. We determined the BPDCN DNA methylation profile and observed a dramatic loss of DNA methylation during malignant transformation from early and mature DCs towards BPDCN. DNA methylation profiles further differentiate between BPDCN, AML, CMML, and T-ALL exhibiting the most striking global demethylation, mitotic stress, and merely localized DNA hypermethylation in BPDCN resulting in pronounced inactivation of tumor suppressor genes by comparison. DNA methylation-based analysis of the tumor microenvironment by MethylCIBERSORT yielded two, prognostically relevant clusters (IC1 and IC2) with specific cellular composition and mutational spectra. Further, the transcriptional subgroups of BPDCN (C1 and C2) differ by DNA methylation signatures in interleukin/inflammatory signaling genes but also by higher transcription factor activity of JAK-STAT and NFkB signaling in C2 in contrast to an EZH2 dependence in C1-BPDCN. Our integrative characterization of BPDCN offers novel molecular insights and potential diagnostic applications.


Subject(s)
DNA Methylation , Dendritic Cells , Humans , Dendritic Cells/pathology , Dendritic Cells/metabolism , Female , Male , Middle Aged , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Tumor Microenvironment/genetics , Aged , Adult , Prognosis , Gene Expression Regulation, Neoplastic , Mutation , Biomarkers, Tumor/genetics
5.
Nat Commun ; 14(1): 309, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36658118

ABSTRACT

Richter syndrome (RS) is the transformation of chronic lymphocytic leukemia (CLL) into aggressive lymphoma, most commonly diffuse large B-cell lymphoma (DLBCL). We characterize 58 primary human RS samples by genome-wide DNA methylation and whole-transcriptome profiling. Our comprehensive approach determines RS DNA methylation profile and unravels a CLL epigenetic imprint, allowing CLL-RS clonal relationship assessment without the need of the initial CLL tumor DNA. DNA methylation- and transcriptomic-based classifiers were developed, and testing on landmark DLBCL datasets identifies a poor-prognosis, activated B-cell-like DLBCL subset in 111/1772 samples. The classification robustly identifies phenotypes very similar to RS with a specific genomic profile, accounting for 4.3-8.3% of de novo DLBCLs. In this work, RS multi-omics characterization determines oncogenic mechanisms, establishes a surrogate marker for CLL-RS clonal relationship, and provides a clinically relevant classifier for a subset of primary "RS-type DLBCL" with unfavorable prognosis.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , B-Lymphocytes/pathology , DNA Methylation/genetics
6.
Genes Chromosomes Cancer ; 61(7): 432-436, 2022 07.
Article in English | MEDLINE | ID: mdl-35218115

ABSTRACT

Deregulation of micro(mi)-RNAs is a common mechanism in tumorigenesis. We investigated the expression of 2083 miRNAs in T-cell prolymphocytic leukemia (T-PLL). Compared to physiologic CD4+ and CD8+ T-cell subsets, 111 miRNAs were differentially expressed in T-PLL. Of these, 33 belonged to miRNA gene clusters linked to cancer. Genomic variants affecting miRNAs were infrequent with the notable exception of copy number aberrations. Remarkably, we found strong upregulation of the miR-200c/-141 cluster in T-PLL to be associated with DNA hypomethylation and active promoter marks. Our findings suggest that copy number aberrations and epigenetic changes could contribute to miRNA deregulation in T-PLL.


Subject(s)
Leukemia, Prolymphocytic, T-Cell , MicroRNAs , Carcinogenesis/genetics , DNA Methylation/genetics , Epigenesis, Genetic , Humans , Leukemia, Prolymphocytic, T-Cell/genetics , MicroRNAs/genetics
7.
Microorganisms ; 8(8)2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32726909

ABSTRACT

Cholangiocarcinoma (CCA) is a rare biliary-duct malignancy with poor prognosis. Recently, the presence of the human polyomavirus 6 (HPyV6) has been reported in the bile of diverse hepatobiliary diseases, particularly in the bile of CCA patients. Here, we investigated the presence of novel HPyVs in CCA tissues using diverse molecular techniques to assess a possible role of HPyVs in CCA. Formalin-Fixed Paraffin-Embedded (FFPE) tissues of 42 CCA patients were included in this study. PCR-based screening for HPyVs was conducted using degenerated and HPyV-specific primers. Following that, we performed FISH, RNA in situ hybridization (RNA-ISH), and immunohistochemistry (IHC) to assess the presence of HPyVs in selected tissues. Of all 42 CCAs, 25 (59%) were positive for one HPyV, while 10 (24%) CCAs were positive for 2 HPyVs simultaneously, and 7 (17%) were negative for HPyVs. Of the total 35 positive CCAs, 19 (45%) were positive for HPyV7, 4 (9%) for HPyV6, 2 (5%) for Merkel cell polyomavirus (MCPyV), 8 (19%) for both HPyV7/MCPyV, and 2 (5%) for both HPyV6/HPyV7 as confirmed by sequencing. The presence of viral nucleic acids was confirmed by specific FISH, while the RNA-ISH confirmed the presence of HPyV6 on the single-cell level. In addition, expression of HPyV7, HPyV6, and MCPyV proteins were confirmed by IHC. Our results strongly indicate that HPyV7, HPyV6, and MCPyV infect bile duct epithelium, hepatocytes, and CCA cells, which possibly suggest an indirect role of these viruses in the etiopathogenesis of CCA. Furthermore, the observed hepatotropism of these novel HPyV, in particular HPyV7, might implicate a role of these viruses in other hepatobiliary diseases.

8.
Epigenetics ; 15(12): 1319-1324, 2020 12.
Article in English | MEDLINE | ID: mdl-32475296

ABSTRACT

Merkel cell carcinoma (MCC) is a very rare, but highly aggressive skin cancer which occurs mainly in elderly patients. MCC cells show an expression pattern of three cell lineages: epithelial, neuroendocrine, and B-cell progenitor. This trilinear expression pattern suggests stemness activity in MCC. The etiopathogenesis of MCC is either linked to the Merkel cell polyomavirus (MCPyV) or in a smaller proportion (20%) to high levels of UV-induced somatic mutations. Both viral presence and accumulation of mutations have been shown to be associated with accelerated DNA methylation Age (DNAmAge) compared to chronological age. The MCC DNAmAge was significantly lower compared to the chronological age, which was irrespective of the viral presence or mutational burden. Although these features indicate some aspects of stemness in MCC cells, gene-expression-based pluripotency testing did not provide evidence for pluripotency of MCC cells.


Subject(s)
Carcinoma, Merkel Cell/genetics , Cellular Senescence , Epigenesis, Genetic , Mutation Accumulation , Aged , Aged, 80 and over , Carcinoma, Merkel Cell/pathology , Carcinoma, Merkel Cell/virology , DNA Methylation , Female , Humans , Male , Merkel cell polyomavirus/pathogenicity , Middle Aged , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/physiology
9.
Ther Adv Med Oncol ; 12: 1758835920975621, 2020.
Article in English | MEDLINE | ID: mdl-33403016

ABSTRACT

BACKGROUND: Merkel cell carcinoma (MCC) is a highly malignant skin cancer. Despite major treatment improvements during the last decade, up to 50% of patients do not respond to therapy or develop recurrent disease. For these patients, alternative treatment options are urgently needed. Here, we assessed the efficacy of the combination of the BCL-2 inhibitor Navitoclax and the PI3K p110α inhibitor Alpelisib in MCC cell lines. METHODS: The expression of BCL-2 was assessed by immunohistochemistry in MCC and MCC cell lines. Treatment with Navitoclax and Alpelisib alone and in combination was performed on four MCC cell lines. The decrease of cell viability during treatment was assessed by XTT assay and visualized for the combinations by 3D combinatorial index plotting. The increase of apoptotic cells was determined by cleaved PARP Western blotting and Annexin V staining. RESULTS: Some 94% of MCCs and all three MCPyV-positive cell lines showed BCL-2 expression. Navitoclax monotreatment was shown to be highly effective when treating BCL-2-positive cell lines (IC50-values ranging from 96.0 to 323.0 nM). The combination of Alpelisib and Navitoclax resulted in even stronger synergistic and prolonged inhibitions of MCC cell viability through apoptosis up to 4 days. DISCUSSION: Our results show that the anti-apoptotic BCL-2 is frequently expressed in MCC and MCC cell lines. Inhibition of BCL-2 by Navitoclax in combination with Alpelisib revealed a strong synergy and prolonged inhibition of MCC cell viability and induction of apoptosis. The combination of Navitoclax and Alpelisib is a novel potential treatment option for MCC patients.

10.
Thorac Cancer ; 10(3): 445-451, 2019 03.
Article in English | MEDLINE | ID: mdl-30628176

ABSTRACT

BACKGROUND: The etiology of thymic epithelial tumors is unknown. Murine polyomavirus strain PTA has been shown to induce thymomas in mice. Recently, using diverse molecular techniques, we reported the presence of human polyomavirus 7 (HPyV7) in thymic epithelial tumors. In the present study, we investigated the prevalence of Merkel cell polyomavirus (MCPyV) in thymic epithelial tumors. METHODS: Thirty-six thymomas were screened for MCPyV by PCR and subsequently tested by DNA and RNA in situ hybridization and immunohistochemistry. Twenty-six thymomas were diagnosed with myasthenia gravis (MG). RESULTS: MCPyV DNA was detected by PCR in 7 (19.4%) of the 36 thymic epithelial tumors and in six of these, the presence of MCPyV was confirmed by fluorescence situ hybridization. Of these, 3 (28.6%) revealed weak MCPyV LT-antigen protein expression. In addition, one of the MCPyV positive thymomas tested positive for MCPyV LT RNA with RNAscope. Of interest, two out of the three thymomas that previously tested positive for MCPyV by immunohistochemistry also tested positive for HPyV7. One of the 11 MG-negative and 2 of the 25 MG-positive were positive for MCPyV. CONCLUSIONS: MCPyV DNA and MCPyV protein expression can be detected in human epithelial thymoma; however, to a far lesser extent than HPyV7. Our data strongly indicate that because of its infrequent detection and weak expression, MCPyV is unlikely to play an important role in the etiopathogenesis of human thymomas.


Subject(s)
Merkel cell polyomavirus/genetics , Neoplasms, Glandular and Epithelial/genetics , Thymoma/genetics , Thymus Neoplasms/genetics , Viral Proteins/genetics , Adult , Aged , Aged, 80 and over , Animals , Carcinogenesis/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , In Situ Hybridization, Fluorescence/methods , Male , Merkel cell polyomavirus/pathogenicity , Mice , Middle Aged , Neoplasms, Glandular and Epithelial/epidemiology , Neoplasms, Glandular and Epithelial/pathology , Neoplasms, Glandular and Epithelial/virology , Thymoma/epidemiology , Thymoma/pathology , Thymoma/virology , Thymus Neoplasms/epidemiology , Thymus Neoplasms/pathology , Thymus Neoplasms/virology
11.
Neoplasia ; 20(12): 1227-1235, 2018 12.
Article in English | MEDLINE | ID: mdl-30414538

ABSTRACT

Merkel cell carcinoma (MCC) is a highly aggressive non-melanoma skin cancer of the elderly which is associated with the Merkel cell polyomavirus (MCPyV). MCC reveals a trilinear differentiation characterized by neuroendocrine, epithelial and pre/pro B-cell lymphocytic gene expression disguising the cellular origin of MCC. Here we investigated the expression of the neuroendocrine key regulators RE1 silencing transcription factor (REST), neurogenic differentiation 1 (NeuroD1) and the Achaete-scute homolog 1 (ASCL1) in MCC. All MCCs were devoid of REST and were positive for NeuroD1 expression. Only one MCC tissue revealed focal ASCL1 expression. This was confirmed in MCPyV-positive MCC cell lines. Of interest, MCPyV-negative cell lines did express REST. The introduction of REST expression in REST-negative, MCPyV-positive MCC cells downregulated the neuroendocrine gene expression. The lack of the neuroendocrine master regulator ASCL1 in almost all tested MCCs points to an important role of the absence of the negative regulator REST towards the MCC neuroendocrine phenotype. This is underlined by the expression of the REST-regulated microRNAs miR-9/9* in REST-negative MCC cell lines. These data might provide the basis for the understanding of neuroendocrine gene expression profile which is expected to help to elucidate the cellular origin of MCC.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Merkel cell polyomavirus/genetics , Aged , Aged, 80 and over , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , DNA Methylation , Female , Gene Expression , Humans , Immunohistochemistry , Male , Merkel cell polyomavirus/metabolism , MicroRNAs/genetics , Middle Aged , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism
12.
Oncotarget ; 9(51): 29565-29573, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-30038704

ABSTRACT

The prognosis of stage III/IV Merkel cell carcinoma (MCC) is very poor. The Phosphatidylinositol 3-kinase p110δ specific inhibitor idelalisib has recently been reported to induce complete clinical remission in a stage IV MCC patient. Here we assessed the expression of p110δ in primary MCC and MCC cell lines including its functionality. Immunofluorescence microscopy revealed a specific cytoplasmic p110δ expression in 71.4% of the tested MCCs and in all tested MCC cell lines. Compared to the B cell leukemia cell line REH all MCC cell lines, except MKL-1, revealed a lower response towards the treatment with idelalisib. MKL-1 showed a 10-fold higher IC50 compared to REH which was accompanied by a significant decrease of Akt phosphorylation. However, treating the MCC cells with the specific PI3K p110α subunit inhibitor BYL719 led to a more effective decrease of the cell viability compared to idelalisib: WaGa cells 30-fold, PeTa cells 15-fold and all other MCC cell lines 3-fold. Although PI3K p110δ is expressed in the majority of MCCs and cell lines its inhibition by idelalisib alone does not suffice to effectively affect MCC cells viability.

SELECTION OF CITATIONS
SEARCH DETAIL
...