Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 21863, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34751191

ABSTRACT

Carrier transport was studied both numerically and experimentally using scanning photocurrent microscopy (SPCM) in two-dimensional (2D) transport structures, where the structure size in the third dimension is much smaller than the diffusion length and electrodes cover the whole terminal on both sides. Originally, one would expect that with increasing width in 2D transport structures, scanning photocurrent profiles will gradually deviate from those of the ideal one-dimensional (1D) transport structure. However, the scanning photocurrent simulation results surprisingly showed almost identical profiles from structures with different widths. In order to clarify this phenomenon, we observed the spatial distribution of carriers. The simulation results indicate that the integrated carrier distribution in the 2D transport structures with finite width can be well described by a simple-exponential-decay function with the carrier decay length as the fitting parameter, just like in the 1D transport structures. For ohmic-contact 2D transport structures, the feasibility of the fitting formula from our previous 1D analytical model was confirmed. On the other hand, the application of a simple-exponential-decay function in scanning photocurrent profiles for the diffusion length extraction in Schottky-contact 2D transport structures was also justified. Furthermore, our simulation results demonstrate that the scanning photocurrent profiles in the ohmic- or Schottky-contact three-dimensional (3D) transport structures with electrodes covering the whole terminal on both sides will reduce to those described by the corresponding 1D fitting formulae. Finally, experimental SPCM on a p-type InGaAs air-bridge two-terminal thin-film device was carried out. The measured photocurrent profiles can be well fitted by the specific fitting formula derived from our previous 1D analytical model and the extracted electron mobility-lifetime product of this thin-film device is 6.6 × 10-7 cm2·V-1. This study allows us to extract the minority carrier decay length and to obtain the mobility-lifetime product which can be used to evaluate the performance of 2D carrier transport devices.

2.
Sci Rep ; 10(1): 5200, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32251350

ABSTRACT

A new simple method is proposed to extract the ambipolar diffusion length for two-dimensional (2D) electronic transport in thin film structures using a scanning photoluminescence microscopy (SPLM) setup. No spatially-resolved photoluminescence detection methods are required. By measuring the excitation-position-dependent PL intensity across the edge of a semiconductor, ambipolar diffusion length can be extracted from the SPLM profile through a simple analytic fitting function. Numerical simulation was first used to verify the fitting method. Then the fitting method was applied to extract the ambipolar diffusion length from the measured SPLM profile of a GaAs thin film structure. Carrier lifetime was obtained in an accompanying time-resolved photoluminescence measurement under the same excitation condition, and thus the ambipolar diffusion coefficient can be determined simultaneously. The new fitting method provides a simple way to evaluate carrier transport properties in 2D electronic transport structures such as thin films or quantum wells.

3.
Sci Rep ; 9(1): 9426, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31263209

ABSTRACT

Spatially resolved current measurements such as scanning photocurrent microscopy (SPCM) have been extensively applied to investigate carrier transport properties in semiconductor nanowires. A traditional simple-exponential-decay formula based on the assumption of carrier diffusion dominance in the scanning photocurrent profiles can be applied for carrier diffusion length extraction using SPCM in Schottky-contact-based or p-n junction-based devices where large built-in electric fields exist. However, it is also important to study the electric-field dependent transport properties in widely used ohmic-contact nanowire devices where the assumption of carrier diffusion dominance is invalid. Here we derive an analytic formula for scanning photocurrent profiles in such ohmic-contact nanowire devices under uniform applied electric fields and weak optical excitation. Under these operation conditions and the influence of photo-carrier-induced electric field, the scanning photocurrent profile and the carrier spatial distribution strikingly do not share the same functional form. Instead, a surprising new analytic relation between the scanning photocurrent profile and the minority carrier decay length was established. Then the derived analytic formula was validated numerically and experimentally. This analytic formula provides a new fitting method for SPCM profiles to correctly determine the minority carrier decay length, which allows us to quantitatively evaluate the performance of nanowire-based devices.

4.
Endocr J ; 62(10): 927-38, 2015.
Article in English | MEDLINE | ID: mdl-26228795

ABSTRACT

The major purpose of this study was to investigate the effect of resveratrol (RES) on the spatial learning and memory ability in subclinical hypothyroidism (SCH) rat model and the potential mechanism. A SCH rat model was induced by hemi-thyroid electrocauterization and the activity of hypothalamus-pituitary-thyroid (HPT) axis was detected. The spatial learning and memory ability was tested using Morris water maze (MWM) and Y-maze. The protein expressions of synaptotagmin-1 (syt-1) and brain-derived neurotrophic factor (BDNF) in the hippocampus were measured via western blot. The results showed that SCH rat model was successfully duplicated. The SCH rats showed impaired learning and memory in the behavioral tests. However, these changes were reversed by the treatment of RES (15mg/kg) and levothyroxine (LT4). Moreover, RES treated rats exhibited reduced plasma TSH level and hypothalamic thyrotropin releasing hormone (TRH) mRNA expression, which suggested that the imbalance of HPT axis in the SCH rats could be reversed by RES treatment. Furthermore, RES treatment up-regulated the protein levels of syt-1 and BDNF in hippocampus. These findings indicated an amelioration effect of RES on the spatial learning and memory in the SCH rats, the mechanism of which might be involved with its ability of modifying the hyperactive HPT axis and up-regulating the hippocampal hypo-expression of syt-1 and BDNF.


Subject(s)
Asymptomatic Diseases , Disease Models, Animal , Hypothyroidism/drug therapy , Learning Disabilities/prevention & control , Memory Disorders/prevention & control , Nootropic Agents/therapeutic use , Stilbenes/therapeutic use , Animals , Antioxidants/therapeutic use , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/agonists , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hormone Replacement Therapy , Hypothyroidism/metabolism , Hypothyroidism/physiopathology , Learning Disabilities/etiology , Male , Maze Learning/drug effects , Memory Disorders/etiology , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Random Allocation , Rats, Sprague-Dawley , Resveratrol , Spatial Learning/drug effects , Synaptotagmin I/agonists , Synaptotagmin I/metabolism , Thyroxine/therapeutic use
5.
Opt Lett ; 38(9): 1482-4, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23632525

ABSTRACT

To distribute microwaves over fibers, optical single-sideband (SSB) modulation signals are preferred to optical double-sideband (DSB) modulation signals. This study investigates an optically injected semiconductor laser at period-one nonlinear dynamics for optical DSB-to-SSB conversion. For the operating microwave frequencies up to 40 GHz investigated in this study, the proposed system regenerates or even enhances the microwave features of an optical DSB input while converting its optical feature into SSB with an intensity difference of at least 20 dB. The bit-error ratio at 622 Mb/s is down to 10(-9) with a sensitivity improvement of up to 3 dB. The proposed system can be self-adapted to certain changes in the operating microwave frequency and can operate stably under certain fluctuations in the input optical power and frequency.

SELECTION OF CITATIONS
SEARCH DETAIL
...