Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Med Image Anal ; 39: 18-28, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28410505

ABSTRACT

Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%.


Subject(s)
Pancreas/diagnostic imaging , Tomography, X-Ray Computed/methods , Abdomen/diagnostic imaging , Adult , Aged , Aged, 80 and over , Algorithms , Female , Humans , Male , Middle Aged , Reproducibility of Results
2.
Med Image Anal ; 35: 327-344, 2017 01.
Article in English | MEDLINE | ID: mdl-27567734

ABSTRACT

The evaluation of changes in Intervertebral Discs (IVDs) with 3D Magnetic Resonance (MR) Imaging (MRI) can be of interest for many clinical applications. This paper presents the evaluation of both IVD localization and IVD segmentation methods submitted to the Automatic 3D MRI IVD Localization and Segmentation challenge, held at the 2015 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI2015) with an on-site competition. With the construction of a manually annotated reference data set composed of 25 3D T2-weighted MR images acquired from two different studies and the establishment of a standard validation framework, quantitative evaluation was performed to compare the results of methods submitted to the challenge. Experimental results show that overall the best localization method achieves a mean localization distance of 0.8 mm and the best segmentation method achieves a mean Dice of 91.8%, a mean average absolute distance of 1.1 mm and a mean Hausdorff distance of 4.3 mm, respectively. The strengths and drawbacks of each method are discussed, which provides insights into the performance of different IVD localization and segmentation methods.


Subject(s)
Imaging, Three-Dimensional/methods , Intervertebral Disc/diagnostic imaging , Magnetic Resonance Imaging/methods , Algorithms , Humans
3.
Int J Comput Assist Radiol Surg ; 11(9): 1673-85, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27038965

ABSTRACT

PURPOSE: Accurate preoperative planning is crucial for the outcome of total hip arthroplasty. Recently, 2D pelvic X-ray radiographs have been replaced by 3D CT. However, CT suffers from relatively high radiation dosage and cost. An alternative is to reconstruct a 3D patient-specific volume data from 2D X-ray images. METHODS: In this paper, based on a fully automatic image segmentation algorithm, we propose a new control point-based 2D-3D registration approach for a deformable registration of a 3D volumetric template to a limited number of 2D calibrated X-ray images and show its application to personalized reconstruction of 3D volumes of the proximal femur. The 2D-3D registration is done with a hierarchical two-stage strategy: the scaled-rigid 2D-3D registration stage followed by a regularized deformable B-spline 2D-3D registration stage. In both stages, a set of control points with uniform spacing are placed over the domain of the 3D volumetric template first. The registration is then driven by computing updated positions of these control points with intensity-based 2D-2D image registrations of the input X-ray images with the associated digitally reconstructed radiographs, which allows computing the associated registration transformation at each stage. RESULTS: Evaluated on datasets of 44 patients, our method achieved an overall surface reconstruction accuracy of [Formula: see text] and an average Dice coefficient of [Formula: see text]. We further investigated the cortical bone region reconstruction accuracy, which is important for planning cementless total hip arthroplasty. An average cortical bone region Dice coefficient of [Formula: see text] and an inner cortical bone surface reconstruction accuracy of [Formula: see text] were found. CONCLUSIONS: In summary, we developed a new approach for reconstruction of 3D personalized volumes of the proximal femur from 2D X-ray images. Comprehensive experiments demonstrated the efficacy of the present approach.


Subject(s)
Algorithms , Femur/diagnostic imaging , Imaging, Three-Dimensional/methods , Tomography, X-Ray Computed/methods , Calibration , Humans
4.
PLoS One ; 10(11): e0143327, 2015.
Article in English | MEDLINE | ID: mdl-26599505

ABSTRACT

In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively.


Subject(s)
Spine/diagnostic imaging , Spine/pathology , Algorithms , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Tomography, X-Ray Computed
5.
Med Image Anal ; 26(1): 173-84, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26426453

ABSTRACT

This paper addresses the issue of fully automatic segmentation of a hip CT image with the goal to preserve the joint structure for clinical applications in hip disease diagnosis and treatment. For this purpose, we propose a Multi-Atlas Segmentation Constrained Graph (MASCG) method. The MASCG method uses multi-atlas based mesh fusion results to initialize a bone sheetness based multi-label graph cut for an accurate hip CT segmentation which has the inherent advantage of automatic separation of the pelvic region from the bilateral proximal femoral regions. We then introduce a graph cut constrained graph search algorithm to further improve the segmentation accuracy around the bilateral hip joint regions. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 15-fold cross validation. When the present approach was compared to manual segmentation, an average surface distance error of 0.30 mm, 0.29 mm, and 0.30 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. A further look at the bilateral hip joint regions demonstrated an average surface distance error of 0.16 mm, 0.21 mm and 0.20 mm for the acetabulum, the left femoral head, and the right femoral head, respectively.


Subject(s)
Algorithms , Arthrography/methods , Hip Joint/diagnostic imaging , Pattern Recognition, Automated/methods , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Subtraction Technique , Tomography, X-Ray Computed/methods , Humans , Reproducibility of Results , Sensitivity and Specificity
6.
IEEE Trans Med Imaging ; 34(9): 1890-900, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25794388

ABSTRACT

Cephalometric analysis is an essential clinical and research tool in orthodontics for the orthodontic analysis and treatment planning. This paper presents the evaluation of the methods submitted to the Automatic Cephalometric X-Ray Landmark Detection Challenge, held at the IEEE International Symposium on Biomedical Imaging 2014 with an on-site competition. The challenge was set to explore and compare automatic landmark detection methods in application to cephalometric X-ray images. Methods were evaluated on a common database including cephalograms of 300 patients aged six to 60 years, collected from the Dental Department, Tri-Service General Hospital, Taiwan, and manually marked anatomical landmarks as the ground truth data, generated by two experienced medical doctors. Quantitative evaluation was performed to compare the results of a representative selection of current methods submitted to the challenge. Experimental results show that three methods are able to achieve detection rates greater than 80% using the 4 mm precision range, but only one method achieves a detection rate greater than 70% using the 2 mm precision range, which is the acceptable precision range in clinical practice. The study provides insights into the performance of different landmark detection approaches under real-world conditions and highlights achievements and limitations of current image analysis techniques.


Subject(s)
Anatomic Landmarks/diagnostic imaging , Cephalometry/methods , Head/diagnostic imaging , Image Processing, Computer-Assisted/methods , Adolescent , Adult , Child , Head/anatomy & histology , Humans , Middle Aged , Radiography, Dental , Young Adult
7.
IEEE Trans Med Imaging ; 34(8): 1719-29, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25700441

ABSTRACT

This paper addresses the problem of fully-automatic localization and segmentation of 3D intervertebral discs (IVDs) from MR images. Our method contains two steps, where we first localize the center of each IVD, and then segment IVDs by classifying image pixels around each disc center as foreground (disc) or background. The disc localization is done by estimating the image displacements from a set of randomly sampled 3D image patches to the disc center. The image displacements are estimated by jointly optimizing the training and test displacement values in a data-driven way, where we take into consideration both the training data and the geometric constraint on the test image. After the disc centers are localized, we segment the discs by classifying image pixels around disc centers as background or foreground. The classification is done in a similar data-driven approach as we used for localization, but in this segmentation case we are aiming to estimate the foreground/background probability of each pixel instead of the image displacements. In addition, an extra neighborhood smooth constraint is introduced to enforce the local smoothness of the label field. Our method is validated on 3D T2-weighted turbo spin echo MR images of 35 patients from two different studies. Experiments show that compared to state of the art, our method achieves better or comparable results. Specifically, we achieve for localization a mean error of 1.6-2.0 mm, and for segmentation a mean Dice metric of 85%-88% and a mean surface distance of 1.3-1.4 mm.


Subject(s)
Imaging, Three-Dimensional/methods , Intervertebral Disc/anatomy & histology , Magnetic Resonance Imaging/methods , Algorithms , Databases, Factual , Humans , Spine/anatomy & histology
8.
Ann Biomed Eng ; 43(5): 1247-59, 2015 May.
Article in English | MEDLINE | ID: mdl-25366904

ABSTRACT

Extraction of surface models of a hip joint from CT data is a pre-requisite step for computer assisted diagnosis and planning (CADP) of periacetabular osteotomy (PAO). Most of existing CADP systems are based on manual segmentation, which is time-consuming and hard to achieve reproducible results. In this paper, we present a Fully Automatic CT Segmentation (FACTS) approach to simultaneously extract both pelvic and femoral models. Our approach works by combining fast random forest (RF) regression based landmark detection, multi-atlas based segmentation, with articulated statistical shape model (aSSM) based fitting. The two fundamental contributions of our approach are: (1) an improved fast Gaussian transform (IFGT) is used within the RF regression framework for a fast and accurate landmark detection, which then allows for a fully automatic initialization of the multi-atlas based segmentation; and (2) aSSM based fitting is used to preserve hip joint structure and to avoid penetration between the pelvic and femoral models. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 6-fold cross validation. When the present approach was compared to manual segmentation, a mean segmentation accuracy of 0.40, 0.36, and 0.36 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. When the models derived from both segmentations were used to compute the PAO diagnosis parameters, a difference of 2.0 ± 1.5°, 2.1 ± 1.6°, and 3.5 ± 2.3% were found for anteversion, inclination, and acetabular coverage, respectively. The achieved accuracy is regarded as clinically accurate enough for our target applications.


Subject(s)
Hip Joint/diagnostic imaging , Diagnosis, Computer-Assisted , Femur/diagnostic imaging , Humans , Models, Biological , Osteotomy , Pelvis/diagnostic imaging , Tomography, X-Ray Computed
9.
IEEE Trans Med Imaging ; 32(9): 1723-30, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23744670

ABSTRACT

A robust automated segmentation of abdominal organs can be crucial for computer aided diagnosis and laparoscopic surgery assistance. Many existing methods are specialized to the segmentation of individual organs and struggle to deal with the variability of the shape and position of abdominal organs. We present a general, fully-automated method for multi-organ segmentation of abdominal computed tomography (CT) scans. The method is based on a hierarchical atlas registration and weighting scheme that generates target specific priors from an atlas database by combining aspects from multi-atlas registration and patch-based segmentation, two widely used methods in brain segmentation. The final segmentation is obtained by applying an automatically learned intensity model in a graph-cuts optimization step, incorporating high-level spatial knowledge. The proposed approach allows to deal with high inter-subject variation while being flexible enough to be applied to different organs. We have evaluated the segmentation on a database of 150 manually segmented CT images. The achieved results compare well to state-of-the-art methods, that are usually tailored to more specific questions, with Dice overlap values of 94%, 93%, 70%, and 92% for liver, kidneys, pancreas, and spleen, respectively.


Subject(s)
Image Processing, Computer-Assisted/methods , Radiography, Abdominal/methods , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Databases, Factual , Female , Humans , Kidney/diagnostic imaging , Liver/diagnostic imaging , Male , Middle Aged , Models, Biological , Pancreas/diagnostic imaging , Reproducibility of Results , Spleen/diagnostic imaging
10.
Med Image Comput Comput Assist Interv ; 16(Pt 2): 165-72, 2013.
Article in English | MEDLINE | ID: mdl-24579137

ABSTRACT

This paper presents an automated multi-organ segmentation method for 3D abdominal CT images based on a spatially-divided probabilistic atlases. Most previous abdominal organ segmentation methods are ineffective to deal with the large differences among patients in organ shape and position in local areas. In this paper, we propose an automated multi-organ segmentation method based on a spatially-divided probabilistic atlas, and solve this problem by introducing a scale hierarchical probabilistic atlas. The algorithm consists of image-space division and a multi-scale weighting scheme. The generated spatial-divided probabilistic atlas efficiently reduces the inter-subject variance in organ shape and position either in global or local regions. Our proposed method was evaluated using 100 abdominal CT volumes with manually traced ground truth data. Experimental results showed that it can segment the liver, spleen, pancreas, and kidneys with Dice similarity indices of 95.1%, 91.4%, 69.1%, and 90.1%, respectively.


Subject(s)
Imaging, Three-Dimensional/methods , Models, Biological , Pattern Recognition, Automated/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Abdominal/methods , Tomography, X-Ray Computed/methods , Viscera/diagnostic imaging , Algorithms , Computer Simulation , Data Interpretation, Statistical , Humans , Models, Statistical , Radiographic Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
11.
Article in English | MEDLINE | ID: mdl-23285529

ABSTRACT

A robust automated segmentation of abdominal organs can be crucial for computer aided diagnosis and laparoscopic surgery assistance. Many existing methods are specialised to the segmentation of individual organs or struggle to deal with the variability of the shape and position of abdominal organs. We present a general, fully-automated method for multi-organ segmentation of abdominal CT scans. The method is based on a hierarchical atlas registration and weighting scheme that generates target specific priors from an atlas database by combining aspects from multi-atlas registration and patch-based segmentation, two widely used methods in brain segmentation. This approach allows to deal with high inter-subject variation while being flexible enough to be applied to different organs. Our results on a dataset of 100 CT scans compare favourable to the state-of-the-art with Dice overlap values of 94%, 91%, 66% and 94% for liver, spleen, pancreas and kidney respectively.


Subject(s)
Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Abdominal/methods , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Algorithms , Automation , Diagnostic Imaging/methods , Female , Humans , Kidney/pathology , Liver/pathology , Male , Middle Aged , Models, Anatomic , Models, Statistical , Models, Theoretical , Pancreas/pathology , Reproducibility of Results , Spleen/pathology
12.
Opt Express ; 17(26): 23530-5, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-20052060

ABSTRACT

A packaging scheme utilizing omni-directional reflective (ODR) optical coating is described to enhance the light extraction of near UV excited, phosphor-converted LEDs. A simple 1D model was developed to analyze the spectra of the extracted light measured with an integration-sphere as a function of phosphor layer concentration and thickness. Quantitative determination of the absorption coefficients at the pump and fluorescent light wavelength along with the conversion coefficient of phosphors were obtained. The reflection of the ODR film and the back reflector are also characterized. These parameters are then used for efficiency optimization of the present packaging scheme. A maximum enhancement of 40% can be expected with the materials and the configuration used in the present work.


Subject(s)
Lenses , Lighting/instrumentation , Semiconductors , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...