Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(11)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38004977

ABSTRACT

Auxetic re-entrant honeycomb (AREH) structures, consisting of a single soft or tough material, have long faced the challenge of balancing stiffness and rebound resilience. To achieve this balance, dual-material printing technology is employed to enhance shock absorption by combining layers of soft and tough materials. Additionally, a novel structure called the curved re-entrant honeycomb (CREH) structure has been introduced to improve stiffness. The selected materials for processing the composite structures of AREH and CREH are the rigid thermoplastic polymer polylactic acid (PLA) and the soft rubber material thermoplastic polyurethane (TPU), created utilizing fused deposition modeling (FDM) 3D printing technology. The influence of the material system and structure type on stress distribution and mechanical response was subsequently investigated. The results revealed that the dual-material printed structures demonstrated later entry into the densification phase compared to the single-material printed structures. Moreover, the soft material in the interlayer offered exceptional protection, thereby ensuring the overall integrity of the structure. These findings effectively serve as a reference for the design of dual-material re-entrant honeycombs.

2.
RSC Adv ; 8(22): 12029-12034, 2018 Mar 26.
Article in English | MEDLINE | ID: mdl-35539387

ABSTRACT

Waxberry-like core-shell SiO2@TiO2 nanoparticles were prepared by liquid-phase deposition (LPD) method. The dip-coating self-assembly of waxberry-like core-shell SiO2@TiO2 nanoparticles has been used to fabricate coatings with excellent antiglare properties in the large angle and wide wavelength range. The field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements showed that the surface of SiO2 nanoparticles were coated by titania as a shell with controllable and uniform thickness. The ultraviolet visible near-infrared spectrophotometer (UV-Vis-NIR) results indicate that the maximum transmittance of the antiglare coating is up to 95.80% in the visible band, whereas that of the pure glass substrate is only 92.10%. The scattering and haze of the films have been measured to show that such specifically structured coatings exhibited good antiglare properties in the large angle and wide wavelength range.

SELECTION OF CITATIONS
SEARCH DETAIL
...