Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 11(40): 11042-11054, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-34094351

ABSTRACT

Efficient control of regioselectivity is a key concern in transition-metal-catalyzed direct C-H functionalization reactions. Various strategies for regiocontrol have been established by tuning the selectivity of the C-H activation step as a common mode. Herein, we present our study on an alternative mode of regiocontrol, in which the selectivity of the C-H activation step is no longer a key concern. We found that, in a reaction where the C-H activation step exhibits a different regio-preference from the subsequent functionalization step, a ligand-enabled switch of the regioselectivity-determining step could provide efficient regiocontrol. This mode has been exemplified by the Pd(ii)-catalyzed aerobic oxidative Heck reaction of indoles, in which a ligand-controlled C3-/C2-selectivity was achieved for the first time by the development of sulfoxide-2-hydroxypyridine (SOHP) ligands.

2.
Chem Sci ; 9(6): 1534-1539, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29675197

ABSTRACT

The combination of small organic molecules and a base serves as a unique system for the activation carbon-halogen bonds in haloarenes by single electron transfer (SET). However, most of the molecules employed as promoters only allow for the activation of aryl iodides, and efficient activation of aryl bromides and chlorides under this mode is still rather challenging. Herein, we report the discovery of a structurally simple yet powerful promoter molecule, indoline, which exhibits unusually high activity in promoting the activation of haloarenes by SET. In the presence of t-BuOK and a trace amount of oxygen, indoline promotes the formation of aryl radicals not only from aryl iodides and bromides, but also from unactivated aryl chlorides (e.g., chlorobenzene) under relatively mild conditions. Mechanistic studies reveal the molecular basis for its high activity, for which the aromatization process plays a key role in modulating the electron transfer process.

SELECTION OF CITATIONS
SEARCH DETAIL
...