Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pathol ; 233(1): 51-60, 2014 May.
Article in English | MEDLINE | ID: mdl-24374861

ABSTRACT

Loss of mitotic checkpoint of cells contributes to chromosomal instability and leads to carcinogenesis. Mitotic arrest deficient 1 (MAD1) is a key component in mitotic checkpoint signalling. In this study, we identified a novel MAD1 interacting partner, proline-rich acidic protein 1 (PRAP1), using yeast-two hybrid screening, and investigated its role in mitotic checkpoint signalling in hepatocellular carcinoma (HCC). We demonstrated the physical interaction of PRAP1 with MAD1 and of PRAP1 with MAD1 isoform MAD1ß, using a co-immunoprecipitation assay. Moreover, stable expression of PRAP1 in mitotic checkpoint-competent HCC cells, BEL-7402 and SMMC-7721, induced impairment of the mitotic checkpoint (p < 0.01), formation of chromosome bridges (p < 0.01) and aberrant chromosome numbers (p < 0.001). Interestingly, ectopic expression PRAP1 in HCC cells led to significant under-expression of MAD1. In human HCC tumours, 40.4% (23/57) of HCCs showed under-expression of PRAP1 protein as compared with their corresponding non-tumorous livers; up-regulation of MAD1 protein was significantly associated with down-regulation of PRAP1 (p = 0.030). Our data revealed that PRAP1 is a protein interacting partner of MAD1 and that PRAP1 is able to down-regulate MAD1 and suppress mitotic checkpoint signalling in HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Cell Cycle Checkpoints , Cell Cycle Proteins/metabolism , Liver Neoplasms/metabolism , Mitosis , Nuclear Proteins/metabolism , Pregnancy Proteins/metabolism , Adult , Aged , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Chromosome Aberrations , Female , Gene Expression Regulation, Neoplastic , Humans , Immunoprecipitation , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Middle Aged , Nuclear Proteins/genetics , Pregnancy Proteins/genetics , Protein Interaction Mapping , Signal Transduction , Transfection , Two-Hybrid System Techniques , Young Adult
2.
Hepatology ; 53(5): 1558-69, 2011 May.
Article in English | MEDLINE | ID: mdl-21520171

ABSTRACT

UNLABELLED: Phosphatase and tensin homolog (PTEN) is frequently inactivated in cancers and is associated with advanced stages of cancers or metastasis. However, the molecular mechanism of PTEN in hepatocellular carcinoma (HCC) metastasis is unclear. In this study, we found frequent (47.5%, n = 40) protein underexpression of PTEN in human HCCs compared with their corresponding nontumorous livers. Significantly, PTEN underexpression was associated with larger tumor size (P = 0.021), tumor microsatellite formation (P = 0.027), and shorter overall survival of patients (P = 0.035). Using different cell models, we observed that PTEN-knockdown HCC cells and PTEN-knockout mouse embryonic fibroblasts (MEFs) had enhanced cell migratory and invasive abilities. In addition to activation of AKT, there was up-regulation of the Sp1 transcription factor (SP1) and matrix metalloproteinase 2 (MMP2), as well as MMP2 activation in PTEN-knockdown HCC cells and PTEN(-/-) MEFs. With dual luciferase reporter assay, exogenous expression of SP1 in HCC cells led to enhanced MMP2 promoter activity by up to 74%, whereas deletion of the putative SP1 binding site on the MMP2 promoter led to reduced promoter activity by up to 65%. Using chromatin immunoprecipitation assay, we documented increased binding of SP1 to the MMP2 promoter in PTEN-knockdown HCC cells. Overexpression of SP1 and MMP2 was significantly but negatively associated with PTEN underexpression in human HCCs. CONCLUSION: Our results show that PTEN was underexpressed in HCCs, and this underexpression was associated with more aggressive biological behavior and poorer patient survival. We have provided the first evidence that MMP2 up-regulation upon PTEN loss is SP1-dependent. Our findings indicate that PTEN plays a significant role in down-regulating HCC cell invasion via the AKT/SP1/MMP2 pathway.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , PTEN Phosphohydrolase/physiology , Proto-Oncogene Proteins c-akt/physiology , Sp1 Transcription Factor/physiology , Adult , Aged , Cell Movement , Female , Humans , Male , Matrix Metalloproteinase 2 , Middle Aged , Neoplasm Invasiveness , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...