Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; : 1-18, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35257653

ABSTRACT

Tumors have posed a serious threat to human life and health. Researchers can determine whether or not cells are cancerous, whether the cancer cells are invasive or metastatic, and what the effects of drugs are on cancer cells by the physical properties such as hardness, adhesion, and Young's modulus. The atomic force microscope (AFM) has emerged as a key important tool for biomechanics research on tumor cells due to its ability to image and collect force spectroscopy information of biological samples with nano-level spatial resolution and under near-physiological conditions. This article reviews the existing results of the study of cancer cells with AFM. The main foci are the operating principle of AFM and research advances in mechanical property measurement, ultra-microtopography, and molecular recognition of tumor cells, which allows us to outline what we do know it in a systematic way and to summarize and to discuss future directions.

2.
Microsc Res Tech ; 84(11): 2784-2806, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33988282

ABSTRACT

Microlenses have become an indispensable optical element in many optical systems. The advancement of technology has led to a wider variety of microlenses fabrication methods, but these methods suffer from, more or less, some limitations. In this article, we review the manufacturing technology of microlenses from the direct and indirect perspectives. First, we present several fabrication methods and their advantages and disadvantages are discussed. Then, we discuss the commonly used materials for fabricating microlenses and the applications of microlenses in various fields. Finally, we point out the prospects for the future development of microlenses and their fabrication methods.

3.
Biomed Microdevices ; 22(4): 80, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33170362

ABSTRACT

Microfluidic systems are widely used for applications in biology, medicine and chemistry. Particles separation by microfluidics is a scientific subject that requires ongoing research efforts. In this article, we demonstrate a micropillar-based particles separator fabricated using digital micromirror device (DMD)-based optical projection lithography from the perspectives of theory, design, simulation and experiments. Micropillars can be fabricated with customized shapes and sizes which shows high flexible and efficient. The particles separator employs the physical separation of a cylindrical array, a rectangular array, or a triangular array to separate particles. The simulation and experiment results indicate that the device with different micropillars could achieve separation of 20 and 200 µm polystyrene microspheres. Furthermore, the separation efficiency depended on flow rate and the shape of micropillars. All the results can be used to support the redesign of microfluidic structures to address particles separation needs.


Subject(s)
Lab-On-A-Chip Devices , Equipment Design
4.
Micromachines (Basel) ; 11(9)2020 Aug 22.
Article in English | MEDLINE | ID: mdl-32842588

ABSTRACT

Since the late 1980s, additive manufacturing (AM), commonly known as three-dimensional (3D) printing, has been gradually popularized. However, the microstructures fabricated using 3D printing is static. To overcome this challenge, four-dimensional (4D) printing which defined as fabricating a complex spontaneous structure that changes with time respond in an intended manner to external stimuli. 4D printing originates in 3D printing, but beyond 3D printing. Although 4D printing is mainly based on 3D printing and become an branch of additive manufacturing, the fabricated objects are no longer static and can be transformed into complex structures by changing the size, shape, property and functionality under external stimuli, which makes 3D printing alive. Herein, recent major progresses in 4D printing are reviewed, including AM technologies for 4D printing, stimulation method, materials and applications. In addition, the current challenges and future prospects of 4D printing were highlighted.

5.
Biomed Microdevices ; 22(3): 55, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32797312

ABSTRACT

Cell separation has always been a key topic in academic research, especially in the fields of medicine and biology, due to its significance in diagnosis and treatment. Accurate, high-throughput and non-invasive separation of individual cells is key to driving the development of biomedicine and cellular biology. In recent years, a series of researches on the use of microfluidic technologies for cell separation have been conducted to solve bio-related problems. Hence, we present here a comprehensive review on the recent developments of microfluidic technologies for cell separation. In this review, we discuss several cell separation methods, mainly including: physical and biochemical method, their working principles as well as their practical applications. We also analyze the advantages and disadvantages of each method in detail. In addition, the current challenges and future prospects of microfluidic-based cell separation were discussed.


Subject(s)
Cell Separation/instrumentation , Microfluidic Analytical Techniques , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...