Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 276: 130218, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33744646

ABSTRACT

This study investigated the applicability of waste antivirus copper film (CF) as a Fenton-like catalyst. The reaction activity of H2O2 and CF in combination was significantly enhanced by ultrasound (US) irradiation, and the synergy factor calculated from bisphenol A (BPA) degradation using CF-H2O2-US was 9.64 compare to that of dual factors. Photoluminescence analyses were conducted to compare the generation of hydroxyl radicals during both processes. In this sono-Fenton-like process, BPA degradation was affected by solution pH, temperature, ultrasound power, CF size, H2O2 dose, and initial BPA concentration. The BPA degradation curves showed an induction period (first stage) and a rapid degradation period (second stage). Process efficiency was totally and partially enhanced in the presence of chloride and carbonate ions, respectively. Chemical scavenger tests showed that both free and surface-bound hydroxyl radicals participate in BPA degradation under the sono-Fenton-like process using CF. The functional groups and copper crystals on the CF surface remained unchanged after five consecutive reuses, and the BPA degradation efficiency of CF was maintained over 80% during the reuse processes as a sono-Fenton-like catalyst.


Subject(s)
Copper , Hydrogen Peroxide , Benzhydryl Compounds , Oxidation-Reduction , Phenols
2.
Environ Sci Pollut Res Int ; 27(33): 41688-41701, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32696404

ABSTRACT

Cyanide is highly toxic and must be destroyed or removed before discharge into the environment. This study examined the ability of commercial anion-exchange resins to remove residual cyanide complexes from industrial plating wastewater as a complement to conventional treatment. Cyanide removal experiments were conducted with various initial concentrations, reaction times, and temperatures, and the presence of co-existing anions. The maximum cyanide removal capacity (Qm) of the Bonlite BAMB140 resin is 31.82 mg/g and effectively removes cyanide from aqueous solution within 30 min. The cyanide removal by the resin is an endothermic process and is affected by the presence of anions in industrial plating wastewater. The relative competitiveness observed in this study was sulfate > nitrate > chloride. A mixture of 0.05 M NaCl and NaOH regenerates resin for continuous reuse for 5 cycles. The Bonlite BAMB140 resin was able to remove residual cyanide complexes from industrial plating wastewater, but the removal capacity of the resin was reduced by more than three times in batch (9.94 mg/g) and column (6349.12 mg/L) systems. Based on the results, the anion-exchange resins are expected to be used as a complementary technique to remove residual cyanide complexes in industrial plating wastewater after conventional treatment.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Anion Exchange Resins , Anions , Cyanides , Hydrogen-Ion Concentration , Kinetics , Wastewater , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...