Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(48): 17342-17352, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37971793

ABSTRACT

The potential value of acoustic topological insulators is of wide interest because of their special topology-protected edge-state unidirectional transmission properties. In this article, a frequency band-controlled acoustic topological insulator based on local dimensional coordination is designed. It is capable of controlling the unidirectional transmission frequency range by controlling the position of the band gap within a certain range. The energy band structure and eigenmodes are analyzed by using the finite element method. The range of control of the band gap position by the local dimension length is derived. The control of the band gap over the unidirectional propagation frequency is experimentally verified. This work provides a way to precisely control the unidirectional transmission frequency of topology-protected edge states in a specific band, opening up new possibilities for their potential value.

2.
ACS Appl Mater Interfaces ; 15(32): 38581-38591, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37535454

ABSTRACT

Proton-conducting solid oxide electrolysis cell (H-SOEC), as a hydrogen production device using proton conductor oxides as an electrolyte, has gained attention due to its various advantages of being more suitable for operating conditions at intermediate and low temperatures. However, its commercialization urgently needs to address the issue of insufficient catalytic activity of the oxygen electrode at lower temperatures. In this work, PrBa0.5Sr0.5Co1.5Fe0.5O5+δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (PBSCF-BZCYYb) series composite materials (denoted as PBSCF-BZCYYb46, PBSCF- BZCYYb55, and PBSCF-BZCYYb64 based on the mass ratios of PBSCF and BZCYYb as 4:6, 5:5, and 6:4, respectively) are prepared and applied as oxygen electrodes for H-SOECs. The H-SOECs with the structure of PBSCF-BZCYYb|BZCYYb|NiO-BZCYYb (active layer)|NiO-BZCYYb (support layer) are prepared and recorded as Cell 1, Cell 2, and Cell 3 with PBSCF-BZCYYb46, PBSCF-BZCYYb55, and PBSCF-BZCYYb64 as oxygen electrodes. The H-SOECs exhibit electrolysis current densities of 669.00, 743.80, and 503.30 mA cm-2 under 1.3 V at 650 °C, respectively. The cells also show considerable stability in the constant voltage electrolysis of 179.5, 152.8, and 83.0 h, respectively. Through the comparison of various electrochemical properties, PBSCF-BZCYYb55 is considered the most promising oxygen electrode material in this work.

3.
Int J Biol Macromol ; 242(Pt 3): 125078, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37230443

ABSTRACT

Acid-ethanol hydrolysis and subsequent cinnamic acid (CA) esterification were employed to prepare a series of dual-modified starches efficiently loaded with curcumin (Cur) utilizing large conjugation systems provided by CA. Structures of the dual-modified starches were confirmed by IR and NMR, and their physicochemical properties were characterized by SEM, XRD and TGA. The nanoparticles fabricated from the dual-modified starch have perfect spherical shape (250.7-448.5 nm, polydispersity index <0.3), excellent biosafety (no hematotoxicity, no cytotoxicity, no mutagenicity) and high loading of Cur (up to 26.7 % loading). By XPS analysis, this high loading was believed to be supported by the synergistic effect of hydrogen bonding (provided by hydroxyl groups) and π-π interactions (provided by large conjugation system). In addition, the encapsulation of dual-modified starch nanoparticles effectively enhanced the water solubility (18-fold) and physical stability (6-8-fold) of free Cur. In vitro gastrointestinal release showed that Cur-encapsulated dual-modified starch nanoparticles were released more preferably than free Cur and that the Korsmeyer-Peppas model was the most suitable release model. These studies suggest that dual-modified starches containing large conjugation systems would be a better alternative for encapsulating fat-soluble food-derived biofunctional substances in functional food and pharmaceutical applications.


Subject(s)
Curcumin , Nanoparticles , Curcumin/pharmacology , Curcumin/chemistry , Starch , Nanoparticles/chemistry , Solubility , Particle Size , Drug Carriers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...