Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 187: 114316, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763629

ABSTRACT

This study investigates the dynamic changes in the aroma profile of Tuo tea during long-term storage, a process not well understood yet critical to the formation of aged tea's unique characteristics. Aroma profiling of Tuo tea samples stored for 2 to 25 years was conducted using sensory evaluation and the HS-SPME/GC × GC-QTOFMS technique, revealing a progressive transition from fresh, fruity, and floral scents to more stale, woody, and herbal notes. Among 275 identified volatiles, 55 were correlated with storage duration (|r| > 0.8, p < 0.05), and 49 differential compounds (VIP > 1, FC > 1.2, FC < 0.833, p < 0.05) were identified across three storage stages (2-4, 5-10, and 13-25 years). Furthermore, theaspirane, eucalyptol, o-xylene, and 1-ethylidene-1H-indene were selected as potential markers of Tuo tea aging, incorporating the implementation of a Random Forest (RF) model. Additionally, our model exhibited high accuracy in predicting the age of Tuo tea within a prediction error range of -2.51 to 2.84 years. This research contributes to a comprehensive understanding of the impact of storage time on tea aroma and aids in the precise identification of tea age.


Subject(s)
Food Storage , Gas Chromatography-Mass Spectrometry , Odorants , Tea , Volatile Organic Compounds , Odorants/analysis , Tea/chemistry , Volatile Organic Compounds/analysis , Food Storage/methods , Time Factors , Humans , Camellia sinensis/chemistry , Solid Phase Microextraction
2.
PLoS One ; 13(2): e0190318, 2018.
Article in English | MEDLINE | ID: mdl-29462204

ABSTRACT

Xiaguan Tuo Tea is largely consumed by the Chinese, but there is little research into the microbial diversity and component changes during the fermentation of this tea. In this study, we first used fluorescence in situ hybridization (FISH), next-generation sequencing (NGS) and chemical analysis methods to determine the microbial abundance and diversity and the chemical composition during fermentation. The FISH results showed that the total number of microorganisms ranges from 2.3×102 to 4.0×108 cells per gram of sample during fermentation and is mainly dominated by fungi. In the early fermentation stages, molds are dominant (0.6×102~2.8×106 cells/g, 0~35 d). However, in the late stages of fermentation, yeasts are dominant (3.6×104~9.6×106 cells/g, 35~56 d). The bacteria have little effect during the fermentation of tea (102~103 cells/g, <1% of fungus values). Of these fungi, A. niger (Aspergillus niger) and B. adeninivorans (Blastobotrys adeninivorans) are identified as the two most common strains, based on Next-generation Sequencing (NGS) analysis. Peak diversity in tea was observed at day 35 of fermentation (Shannon-Weaver index: 1.195857), and lower diversity was observed on days 6 and 56 of fermentation (Shannon-Weaver index 0.860589 and 1.119106, respectively). During the microbial fermentation, compared to the unfermented tea, the tea polyphenol content decreased by 54%, and the caffeine content increased by 59%. Theanine and free amino acid contents were reduced during fermentation by 81.1 and 92.85%, respectively.


Subject(s)
Fermentation , Tea/microbiology , Bacteria/isolation & purification , China , Colony Count, Microbial , Fungi/isolation & purification , High-Throughput Nucleotide Sequencing , In Situ Hybridization, Fluorescence , Tea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...