Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(13): 38212-38225, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36580243

ABSTRACT

In the present study, a field experiment was conducted to investigate arsenic (As) concentrations in soils and in grains of 15 rice varieties in a contaminated site in Taiwan. The studied site was divided into two experimental units, namely plot A and plot B. The results showed that mean total As concentrations were 70.94 and 61.80 mg kg-1 in plot A and plot B, respectively, and thus greater than or approximate to the soil quality standard for total As in Taiwan (60 mg kg-1). The As levels in rhizosphere soil in plot A (19.71-32.33 mg kg-1) were much higher than in plot B (6.41-8.60 mg kg-1); however, As accumulation in brown rice did not significantly differ between the plots. These results implied that a significant variation in the bioconcentration factor (BCF) value of As existed among different rice genotypes, and a negative correlation was observed between BCF value and rhizosphere As level in the soil. In phytotoxicity, the median values of the ecological risk indicator were 104.85 and 103.89 in plot A and plot B, respectively, indicating considerable risk. In human health risk assessment, the median and 97.5%-tile values for cancer risk for both male and female residents were markedly higher than the acceptable risk (1 × 10-4). Furthermore, non-cancer and cancer risks were higher for males than females, mainly due to the greater rice ingestion rate of males. Sensitivity analysis showed that total As concentration in soil was the main factor affecting health risks, suggesting that priority should be given to the reduction of soil As levels. To better manage the phytotoxicity of As on rice, as well as the health risk to residents resulting from exposure to As-contaminated soils, the soil quality standard for As in farmland soils should be set between 5 and 10 mg kg-1. The methodology developed in this study could also be applied to provide the basis for refining and revising the soil quality standard for heavy metals in farmland in other regions and countries.


Subject(s)
Arsenic , Metals, Heavy , Oryza , Soil Pollutants , Humans , Male , Female , Arsenic/analysis , Soil , Farms , Soil Pollutants/toxicity , Soil Pollutants/analysis , Metals, Heavy/analysis , Risk Assessment , Oryza/genetics , China
2.
J Oncol ; 2021: 8002087, 2021.
Article in English | MEDLINE | ID: mdl-34950209

ABSTRACT

It has been reported that glutamate metabotropic receptor 8 (GRM8) is closely implicated in the progression of human neuroblastoma, lung cancer, and glioma, but its role in breast cancer remains unknown. Thus, the present study was performed to uncover it. Immunohistochemistry, real-time PCR (RT-PCR), and western blotting experiments were performed to test GRM8 expression levels in tissues and cells. Cell functions were assessed by Cell Count Kit 8 (CCK-8), flow cytometry, wound healing, transwell chambers, and in vivo xenotransplantation experiments. The relationship between miR-33a-5p and GRM8 was evaluated by luciferase gene reporter and western blotting assay. The results showed that GRM8 expression was increased in breast cancer tissues and cells, which was closely associated with lower overall survival rate. Ectopic expression of GRM8 significantly enhanced cell growth, migration, and invasion and tumorigenesis and repressed cell apoptosis. In addition, GRM8 was under the negative regulation of miR-33a-5p, which was downregulated in breast cancer tissues and served as a tumor suppressor. Moreover, overexpression of GRM8 abrogated the inhibitive role of miR-33a-5p played in breast cancer. Collectively, this study reveals that GRM8 functions as an oncogene in breast cancer and is regulated by miR-33a-5p.

3.
Sci Total Environ ; 763: 142973, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33498118

ABSTRACT

A field experiment was conducted to study the transport and uptake of arsenic (As) from soil to rice roots and the subsequent translocation from roots to shoots and grains. Twelve rice cultivars were used in the field experiment. The amount of As accumulated in rice grains and sequestered by root iron plaque and rhizosphere soil, were determined to establish the relationship between As concentrations in brown rice and As sequestration by iron oxides. Human health risk was then assessed for Taiwan's population exposed to As through rice consumption. The result of this study showed that the mean total As concentrations in the experimental site and in brown rice were 93.02 mg/kg and 0.158 mg/kg, respectively. The As sequestration by iron oxides on root plaque (3.48-9.51) was higher than that of the rhizosphere soil (1.86-4.09) for all tested rice cultivars. Therefore, the partition ratio (PR) representing the relative tendency of As sequestration by rhizosphere soil to that in root iron plaque was all less than 1. In addition, there was a significant negative linear relationship between inorganic As concentration (iAs) in brown rice and PR value (r2 = 0.38, p < 0.05). Based on the iAs in brown rice, the median value of hazard quotient (HQ) and target cancer risk (TR) was 1.13 and 5.10 × 10-4, respectively, indicating potential cancer and non-cancer risk for Taiwan residents exposed to As through the consumption of rice grown on the studied site. Various PR values were then successfully used for estimating risk, implying that screening the PR of the rice plant before harvest could serve as an early warning signal for protecting consumers' health. However, more experiments with different rice cultivars for the paddy soils were suggested in the future to establish a comprehensive relationship between iAs in brown rice and PR value.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Humans , Iron , Plant Roots/chemistry , Soil , Soil Pollutants/analysis , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...