Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Leg Med (Tokyo) ; 60: 102158, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36308842

ABSTRACT

High-density single nucleotide polymorphisms (SNPs) can detect distant relatives even in the context of pairwise kinship analysis. Although DNA microarrays conveniently generate genome-wide SNP data, they require large quantities of high-quality DNA. Genotyping data obtained from low-quantity and low-quality samples are likely unreliable owing to the incidence of no-called or mistyped SNPs. In this study, we examined the effects of insufficient sample densities and sample degradation on the efficacy of kinship analysis. While low DNA amounts had a minor effect, DNA degradation led to a significant increase in no-call rates and error rates. Posterior probabilities of kinship determination, calculated using the index of chromosomal sharing, were markedly lower in proportion to the no-call rates and error rates. We also investigated the effect of genotype imputation to complement the no-called genome data utilizing SNPs reference panels. We found that the posterior probability of the relative-assumed person increased with genotype complementation in case of mild degradation, even with mistyped genotypes. Therefore, DNA microarray with imputation is a promising method for analyzing forensic DNA samples taken from situations where DNA quantity and quality may be compromised, such as disaster victim identification using pairwise kinship analysis.


Subject(s)
Chromosomes , Polymorphism, Single Nucleotide , Humans , Polymorphism, Single Nucleotide/genetics , Genotype , Oligonucleotide Array Sequence Analysis , DNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...