Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2386, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493205

ABSTRACT

Charge density waves (CDWs) involved with electronic and phononic subsystems simultaneously are a common quantum state in solid-state physics, especially in low-dimensional materials. However, CDW phase dynamics in various dimensions are yet to be studied, and their phase transition mechanism is currently moot. Here we show that using the distinct temperature evolution of orientation-dependent ultrafast electron and phonon dynamics, different dimensional CDW phases are verified in CuTe. When the temperature decreases, the shrinking of c-axis length accompanied with the appearance of interchain and interlayer interactions causes the quantum fluctuations (QF) of the CDW phase until 220 K. At T < 220 K, the CDWs on the different ab-planes are finally locked with each other in anti-phase to form a CDW phase along the c-axis. This study shows the dimension evolution of CDW phases in one CDW system and their stabilized mechanisms in different temperature regimes.

2.
Adv Sci (Weinh) ; 9(35): e2203863, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36285684

ABSTRACT

In condensed matter physics, oxide materials show various intriguing physical properties. Therefore, many efforts are made in this field to develop functional oxides. Due to the excellent potential for tin-based perovskite oxides, an expansion of new related functional compounds is crucial. This work uses a heteroepitaxial approach supported by theoretical calculation to stabilize PbSnO3 thin films with different orientations. The analyses of X-ray diffraction and transmission electron microscopy unveil the structural information. A typical antiferroelectric feature with double hysteresis and butterfly loops is observed through electrical characterizations consistent with the theoretical prediction. The phase transition is monitored, and the transition temperatures are determined based on temperature-dependent structural and electrical characterizations. Furthermore, the microscopic antiferroelectric order is noticed under atomic resolution images via scanning transmission electron microscopy. This work offers a breakthrough in synthesizing epitaxial PbSnO3 thin films and comprehensively understanding its anisotropic antiferroelectric behavior.

3.
Nat Mater ; 20(6): 826-832, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33495629

ABSTRACT

HfO2, a simple binary oxide, exhibits ultra-scalable ferroelectricity integrable into silicon technology. This material has a polymorphic nature, with the polar orthorhombic (Pbc21) form in ultrathin films regarded as the plausible cause of ferroelectricity but thought not to be attainable in bulk crystals. Here, using a state-of-the-art laser-diode-heated floating zone technique, we report the Pbc21 phase and ferroelectricity in bulk single-crystalline HfO2:Y as well as the presence of the antipolar Pbca phase at different Y concentrations. Neutron diffraction and atomic imaging demonstrate (anti)polar crystallographic signatures and abundant 90°/180° ferroelectric domains in addition to switchable polarization with negligible wake-up effects. Density-functional-theory calculations indicate that the yttrium doping and rapid cooling are the key factors for stabilization of the desired phase in bulk. Our observations provide insights into the polymorphic nature and phase control of HfO2, remove the upper size limit for ferroelectricity and suggest directions towards next-generation ferroelectric devices.

4.
Sci Adv ; 6(39)2020 Sep.
Article in English | MEDLINE | ID: mdl-32967823

ABSTRACT

The properties of van der Waals heterostructures are drastically altered by a tunable moiré superlattice arising from periodically varying atomic alignment between the layers. Exciton diffusion represents an important channel of energy transport in transition metal dichalcogenides (TMDs). While early studies performed on TMD heterobilayers suggested that carriers and excitons exhibit long diffusion, a rich variety of scenarios can exist. In a moiré crystal with a large supercell and deep potential, interlayer excitons may be completely localized. As the moiré period reduces at a larger twist angle, excitons can tunnel between supercells and diffuse over a longer lifetime. The diffusion should be the longest in commensurate heterostructures where the moiré superlattice is completely absent. Here, we experimentally demonstrate the rich phenomena of interlayer exciton diffusion in WSe2/MoSe2 heterostructures by comparing several samples prepared with chemical vapor deposition and mechanical stacking with accurately controlled twist angles.

5.
Nat Commun ; 10(1): 4211, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31527602

ABSTRACT

Much of the dramatic growth in research on topological materials has focused on topologically protected surface states. While the domain walls of topological materials such as Weyl semimetals with broken inversion or time-reversal symmetry can provide a hunting ground for exploring topological interfacial states, such investigations have received little attention to date. Here, utilizing in-situ cryogenic transmission electron microscopy combined with first-principles calculations, we discover intriguing domain-wall structures in MoTe2, both between polar variants of the low-temperature(T) Weyl phase, and between this and the high-T higher-order topological phase. We demonstrate how polar domain walls can be manipulated with electron beams and show that phase domain walls tend to form superlattice-like structures along the c axis. Scanning tunneling microscopy indicates a possible signature of a conducting hinge state at phase domain walls. Our results open avenues for investigating topological interfacial states and unveiling multifunctional aspects of domain walls in topological materials.

6.
Sci Adv ; 5(12): eaax7407, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32064316

ABSTRACT

Excitons in monolayer semiconductors have a large optical transition dipole for strong coupling with light. Interlayer excitons in heterobilayers feature a large electric dipole that enables strong coupling with an electric field and exciton-exciton interaction at the cost of a small optical dipole. We demonstrate the ability to create a new class of excitons in hetero- and homobilayers that combines advantages of monolayer and interlayer excitons, i.e., featuring both large optical and electric dipoles. These excitons consist of an electron confined in an individual layer, and a hole extended in both layers, where the carrier-species-dependent layer hybridization can be controlled through rotational, translational, band offset, and valley-spin degrees of freedom. We observe different species of layer-hybridized valley excitons, which can be used for realizing strongly interacting polaritonic gases and optical quantum controls of bidirectional interlayer carrier transfer.

7.
Nat Commun ; 9(1): 1356, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29636479

ABSTRACT

Van der Waals heterobilayers of transition metal dichalcogenides with spin-valley coupling of carriers in different layers have emerged as a new platform for exploring spin/valleytronic applications. The interlayer coupling was predicted to exhibit subtle changes with the interlayer atomic registry. Manually stacked heterobilayers, however, are incommensurate with the inevitable interlayer twist and/or lattice mismatch, where the properties associated with atomic registry are difficult to access by optical means. Here, we unveil the distinct polarization properties of valley-specific interlayer excitons using epitaxially grown, commensurate WSe2/MoSe2 heterobilayers with well-defined (AA and AB) atomic registry. We observe circularly polarized photoluminescence from interlayer excitons, but with a helicity opposite to the optical excitation. The negative circular polarization arises from the quantum interference imposed by interlayer atomic registry, giving rise to distinct polarization selection rules for interlayer excitons. Using selective excitation schemes, we demonstrate the optical addressability for interlayer excitons with different valley configurations and polarization helicities.

8.
Chem Commun (Camb) ; 52(80): 11939-11942, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27711276

ABSTRACT

A triblock structure-directing agent was designed to synthesize hierarchical silicalite-1 octahedra comprising highly-branched, orthogonally-stacked and self-pillared nanoplates that exhibited excellent and stable activity for the vapor-phase Beckmann rearrangement of cyclic oximes and high lactam selectivity.

9.
Sci Rep ; 6: 28047, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27324701

ABSTRACT

Essential structural properties of the non-trivial "string-wall-bounded" topological defects in hexagonal manganites are studied through homotopy group theory and spherical aberration-corrected scanning transmission electron microscopy. The appearance of a "string-wall-bounded" configuration in RMnO3 is shown to be strongly linked with the transformation of the degeneracy space. The defect core regions (~50 Å) mainly adopt the continuous U(1) symmetry of the high-temperature phase, which is essential for the formation and proliferation of vortices. Direct visualization of vortex strings at atomic scale provides insight into the mechanisms and macro-behavior of topological defects in crystalline materials.

10.
Sci Adv ; 2(11): e1600894, 2016 Nov.
Article in English | MEDLINE | ID: mdl-28138520

ABSTRACT

The search for topological superconductors (TSCs) is one of the most urgent contemporary problems in condensed matter systems. TSCs are characterized by a full superconducting gap in the bulk and topologically protected gapless surface (or edge) states. Within each vortex core of TSCs, there exists the zero-energy Majorana bound states, which are predicted to exhibit non-Abelian statistics and to form the basis of the fault-tolerant quantum computation. To date, no stoichiometric bulk material exhibits the required topological surface states (TSSs) at the Fermi level (EF) combined with fully gapped bulk superconductivity. We report atomic-scale visualization of the TSSs of the noncentrosymmetric fully gapped superconductor PbTaSe2. Using quasi-particle scattering interference imaging, we find two TSSs with a Dirac point at E ≅ 1.0 eV, of which the inner TSS and the partial outer TSS cross EF, on the Pb-terminated surface of this fully gapped superconductor. This discovery reveals PbTaSe2 as a promising candidate for TSC.

11.
Ultramicroscopy ; 140: 51-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24674811

ABSTRACT

By using a real space multiple scattering method (FEFF code) with a 2 × 2 × 2 cluster model, we investigated the effects of characteristic Jahn-Teller distortion on the electron energy loss near-edge structure (ELNES) of Mn3O4 spinel. In particular, we examined a correlation between the characteristics of the density of state and the ELNES spectral feature as a function of Jahn-Teller distortion. To this end, we introduced a geometrical variation approach to an Mn3O4 cluster model containing both Mn(3+) and Mn(2+) sites. Upon a prominent Jahn-Teller distortion of the Mn(3+)-octahedral site, we resolved the associated spectral features of Mn, comprising three peaks that merged upon increasing the symmetry of octahedral site from tetragonal (D4h) to cubic (Oh). We have also investigated the interplay between the Mn L-edge and corresponding O K-edge spectra.

12.
Phys Rev Lett ; 113(26): 267602, 2014 Dec 31.
Article in English | MEDLINE | ID: mdl-25615384

ABSTRACT

We show that the spontaneous symmetry breaking in multiferroic hexagonal manganites can be chemically manipulated to yield two complementary ground states: the well-known ferroelectric P6(3)cm and an antipolar P3c phase. Both symmetry breakings yield topologically protected vortex defects, with the antipolar vortices dual to those of the ferroelectric. This duality stems from the existence of 12 possible angles of MnO5 tilting, and broad strain-free walls with low energy spontaneously emerge through an intermediate P3c1 state, providing a complete unified symmetry description.

13.
Nat Nanotechnol ; 8(7): 534-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23812186

ABSTRACT

In ballistic thermal conduction, the wave characteristics of phonons allow the transmission of energy without dissipation. However, the observation of ballistic heat transport at room temperature is challenging because of the short phonon mean free path. Here we show that ballistic thermal conduction persisting over 8.3 µm can be observed in SiGe nanowires with low thermal conductivity for a wide range of structural variations and alloy concentrations. We find that an unexpectedly low percentage (∼0.04%) of phonons carry out the heat conduction process in SiGe nanowires, and that the ballistic phonons display properties including non-additive thermal resistances in series, unconventional contact thermal resistance, and unusual robustness against external perturbations. These results, obtained in a model semiconductor, could enable wave-engineering of phonons and help to realize heat waveguides, terahertz phononic crystals and quantum phononic/thermoelectric devices ready to be integrated into existing silicon-based electronics.

14.
ACS Nano ; 7(6): 4700-7, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23799301

ABSTRACT

With innovative modern material-growth methods, a broad spectrum of fascinating materials with reduced dimensions-ranging from single-atom catalysts, nanoplasmonic and nanophotonic materials to two-dimensional heterostructural interfaces-is continually emerging and extending the new frontiers of materials research. A persistent central challenge in this grand scientific context has been the detailed characterization of the individual objects in these materials with the highest spatial resolution, a problem prompting the need for experimental techniques that integrate both microscopic and spectroscopic capabilities. To date, several representative microscopy-spectroscopy combinations have become available, such as scanning tunneling microscopy, tip-enhanced scanning optical microscopy, atom probe tomography, scanning transmission X-ray microscopy, and scanning transmission electron microscopy (STEM). Among these tools, STEM boasts unique chemical and electronic sensitivity at unparalleled resolution. In this Perspective, we elucidate the advances in STEM and chemical mapping applications at the atomic scale by energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy with a focus on the ultimate challenge of chemical quantification with atomic accuracy.

15.
Adv Mater ; 25(24): 3357-64, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23666885

ABSTRACT

Modulation of band bending at a complex oxide heterointerface by a ferroelectric layer is demonstrated. The as-grown polarization (Pup ) leads to charge depletion and consequently low conduction. Switching the polarization direction (Pdown ) results in charge accumulation and enhances the conduction at the interface. The metal-insulator transition at a conducting polar/nonpolar oxide heterointerface can be controlled by ferroelectric doping.

16.
J Am Chem Soc ; 133(30): 11614-20, 2011 Aug 03.
Article in English | MEDLINE | ID: mdl-21682313

ABSTRACT

In this study, we investigated the interplay of three-dimensional morphologies and the photocarrier dynamics of polymer/inorganic nanocrystal hybrid photoactive layers consisting of TiO(2) nanoparticles and nanorods. Electron tomography based on scanning transmission electron microscopy using high-angle annular dark-field imaging was performed to analyze the morphological organization of TiO(2) nanocrystals in poly(3-hexylthiophene) (P3HT) in optimal solar cell devices. The Three-dimensional (3D) morphologies of these hybrid films were correlated with the photocarrier dynamics of charge separation, transport, and recombination, which were comprehensively probed by various transient techniques. Visualization of these 3D bulk heterojunction morphologies clearly reveals that elongated and anisotropic TiO(2) nanorods in P3HT not only can significantly reduce the probability of the interparticle hopping transport of electrons by providing better connectivity with respect to the TiO(2) nanoparticles, but also tend to form a large-scale donor-acceptor phase-separated morphology, which was found to enhance hole transport. The results support the establishment of a favorable morphology for polymer/inorganic hybrid solar cells due to the presence of the dimensionality of TiO(2) nanocrystals as a result of more effective mobile carrier generation and more efficient and balanced transport of carriers.


Subject(s)
Electric Power Supplies , Solar Energy , Thiophenes/chemistry , Titanium/chemistry , Nanostructures/chemistry , Particle Size , Surface Properties
17.
Nanoscale ; 2(5): 681-4, 2010 May.
Article in English | MEDLINE | ID: mdl-20648309

ABSTRACT

Interaction between the adjacent nanoparticles in a one-dimensional Si nanoparticle chain results in splitting of the surface plasmon resonance (SPR) into transverse and longitudinal polarizations, as well as spatial re-distribution of the SPR intensity, leading to local field enhancement in between the two nanoparticles. Such interaction is directly visualized using electron energy loss spectroscopy related techniques, which also disclose the longer impact parameter associated with the longitudinal mode SPR (as compared to that of the transverse mode SPR). By controlling the growth of Si nanostructures into different morphologies, we demonstrate that the material's optical properties can be manipulated.


Subject(s)
Nanoparticles/chemistry , Silicon/chemistry , Surface Plasmon Resonance , Thermodynamics
18.
Micron ; 41(7): 827-32, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20605722

ABSTRACT

Spectroscopic investigations of individual single-crystalline GaN nanowires with a lateral dimensions of approximately 30-90nm were performed using the spatially resolved technique of electron energy-loss spectroscopy in conjunction with scanning transmission electron microscope showing a 2-A electron probe. Positioning the electron probe upon transmission impact and at aloof setup with respect to the nanomaterials, we explored two types of surface modes intrinsic to GaN, surface exciton polaritons at approximately 8.3eV (approximately 150nm) and surface guided modes at 3.88eV (approximately 320nm), which are in visible/ultra-violet spectral regime above GaN bandgap of approximately 3.3eV (approximately 375nm) and difficult to access by conventional optical spectroscopies. The explorations of these electromagnetic resonances might expand the current technical interests in GaN nanomaterials from the visible/UV range below approximately 3.5eV to the spectral regime further beyond.

19.
Ultramicroscopy ; 109(11): 1333-7, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19573991

ABSTRACT

Here, we demonstrate that non-dipole allowed d-d excitations in NiO can be measured by electron energy loss spectroscopy (EELS) in transmission electron microscopes (TEM). Strong excitations from (3)A(2g) ground states to (3)T(1g) excited states are measured at 1.7 and 3 eV when transferred momentum are beyond 1.5 A(-1). We show that these d-d excitations can be collected with a nanometrical resolution in a dedicated scanning transmission electron microscope (STEM) by setting a good compromise between the convergence angle of the electron probe and the collected transferred momentum. This work opens new possibilities for the study of strongly correlated materials on a nanoscale.

20.
Nanotechnology ; 20(23): 235705, 2009 Jun 10.
Article in English | MEDLINE | ID: mdl-19451685

ABSTRACT

Previous investigations of surface plasmons in Ag largely focused on their excitations in the visible spectral regime. Using scanning transmission electron microscopy with an electron beam of 0.2 nm in conjunction with electron energy-loss spectroscopy, we spectrally and spatially probe the surface plasmons in individual Ag nanoparticles (approximately 30 nm), grown on Si, in the ultra-violet spectral regime. The nanomaterials show respective sharp and broad surface-plasmon resonances at approximately 3.5 eV (approximately 355 nm) and approximately 7.0 eV (approximately 177 nm), and the correlated spectral calculations established their multipolar characteristics. The near-field distributions of the surface plasmons on the nanoparticles were also mapped out, revealing the predominant dipolar nature of the 3.5 eV excitation with obvious near-field enhancements at one end of the nano-object. The unveiled near-field enhancements have potential applications in plasmonics and molecular sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...