Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Curr Genet ; 70(1): 7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743270

ABSTRACT

Fermented eggplant is a traditional fermented food, however lactic acid bacteria capable of producing exopolysaccharide (EPS) have not yet been exploited. The present study focused on the production and protective effects against oxidative stress of an EPS produced by Lacticaseibacillus paracasei NC4 (NC4-EPS), in addition to deciphering its genomic features and EPS biosynthesis pathway. Among 54 isolates tested, strain NC4 showed the highest EPS yield and antioxidant activity. The maximum EPS production (2.04 ± 0.11 g/L) was achieved by culturing in MRS medium containing 60 g/L sucrose at 37 °C for 48 h. Under 2 mM H2O2 stress, the survival of a yeast model Saccharomyces cerevisiae treated with 0.4 mg/mL NC4-EPS was 2.4-fold better than non-treated cells, which was in agreement with the catalase and superoxide dismutase activities measured from cell lysates. The complete genome of NC4 composed of a circular chromosome of 2,888,896 bp and 3 circular plasmids. The NC4 genome comprises more genes with annotated function in nitrogen metabolism, phosphorus metabolism, cell division and cell cycle, and iron acquisition and metabolism as compared to other reported L. paracasei. Of note, the eps gene cluster is not conserved across L. paracasei. Pathways of sugar metabolism for EPS biosynthesis were proposed for the first time, in which gdp pathway only present in few plant-derived bacteria was identified. These findings shed new light on the cell-protective activity and biosynthesis of EPS produced by L. paracasei, paving the way for future efforts to enhance yield and tailor-made EPS production for food and pharmaceutical industries.


Subject(s)
Fermentation , Lacticaseibacillus paracasei , Oxidative Stress , Polysaccharides, Bacterial , Solanum melongena , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/metabolism , Solanum melongena/microbiology , Solanum melongena/genetics , Solanum melongena/metabolism , Lacticaseibacillus paracasei/metabolism , Lacticaseibacillus paracasei/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Genome, Bacterial , Fermented Foods/microbiology , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics
2.
RSC Adv ; 14(3): 1984-1994, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38196911

ABSTRACT

Nitrite contamination and the spread of pathogens can seriously degrade water quality. To simultaneously control these factors, an innovative approach of fabricating a remediation agent that contained denitrifying bacteria and TiO2-AgNPs co-immobilized on floating expanded clay (EC) was proposed in this study. The EC was fabricated from a mixture of clay and rice husk through pyrolysis at a high temperature of 1200 °C, followed by a rapid cooling step to create a porous structure for the material. TiO2NPs were modified with Ag to shift the absorbance threshold of TiO2-AgNPs into the visible region of 700-800 nm. The experimental results showed that the stirring speed of 250 rpm was suitable for immobilizing TiO2-AgNPs on EC and achieved the highest Ti and Ag content of 639.38 ± 3.04 and 200.51 ± 3.71 ppm, respectively. Coating TiO2-Ag/EC with chitosan (0.5%) significantly reduced the detachment level of immobilized TiO2-AgNPs compared to that of the material with no coating. In particular, this functionalized material inhibited 99.93 ± 0.1% of Vibrio parahaemolyticus pathogen but did not adversely affect the denitrifying bacteria after 2 h of visible light irradiation. Based on the electrostatic bond between oppositely charged polymers, the denitrifying bacteria, Bacillus sp., in alginate solution was successfully immobilized on the chitosan-coated TiO2-Ag/EC with a bacteria density of (76.67 ± 9.43) × 107 CFU g-1, retaining its nitrite removal efficiency at 99.0 ± 0.27% through six treatment cycles. These findings provide solid evidence for further investigating the combination of biodegradation and photodegradation in wastewater treatment.

3.
Data Brief ; 47: 108977, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36860407

ABSTRACT

Acropora is one of the most common coral genera found in Phu Quoc Islands, Vietnam. However, the presence of marine snails, such as the coralllivorous gastropod Drupella rugosa, was a potential threat to the survival of many scleractinian species, leading to changes in the health status and bacterial diversity of coral reefs in Phu Quoc Islands. Here, we describe the composition of bacterial communities associated with two species of Acropora (Acropora formosa and Acropora millepora) using the Illumina sequencing technology. This dataset includes 5 coral samples of each status (grazed or healthy), which were collected in Phu Quoc Islands (9°55'20.6″N 104°01'16.4″E) in May 2020. A total of 19 phyla, 34 classes, 98 orders, 216 families and 364 bacterial genera were detected from 10 coral samples. Overall, Proteobacteria and Firmicutes were the two most common bacterial phyla in all samples. Significant differences in the relative abundances of the genera Fusibacter, Halarcobacter, Malaciobacter, and Thalassotalea between grazed and healthy status were observed. However, there was no differences in alpha diversity indices between the two status. Furthermore, the dataset analysis also indicated that Vibrio and Fusibacter were core genera in the grazed samples, whereas Pseudomonas was the core genus in the healthy samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...