Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; : e0052924, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771033

ABSTRACT

The objective of this study was to characterize a novel circulating recombinant form of human immunodeficiency virus type 1 (HIV-1) among people living with HIV in Karachi, Pakistan. We conducted near-full-length genome (NFLG) sequencing on eight samples exhibiting D/G recombination signals in the pol gene region. We successfully obtained NFLG sequences (790-9,614; with reference to the HXB2 genome) from four of the eight samples and then conducted phylogenetic and recombination analyses on them. The four NFLG sequences from our study and one DG unique recombinant form previously identified in the United Kingdom (GenBank accession: MF109700) formed a distinct monophyletic cluster with an Shimodaira-Hasegawa approximate likelihood ratio test node support value of 100%. Bootscan analyses of the five NFLG sequences of DG recombinants showed that all five NFLGs shared the same unique mosaic pattern of recombination breakpoints between D and G clades, with two D fragments in the pol and vif regions inserted into a G backbone. Subregion phylogenetic analyses confirmed these sequences to be a novel circulating recombinant form (CRF) composed of subtypes D and G. The DG recombinant sequences were eventually designated as CRF152_DG by the Los Alamos HIV Sequence Database staff. IMPORTANCE: In Pakistan, the genetic diversity of human immunodeficiency virus type 1 (HIV-1) is becoming increasingly complex, compared to the early years of the epidemic that started after the detection of the first cases of HIV-1 in 1987 in Karachi. Based on the available molecular studies, two dominant HIV-1 clades, sub-subtype A1 and CRF02_AG, have been found to co-circulate with other clades, namely B, C, D, G, CRF01_AE, CRF35_A1D, and CRF56_cpx, in various urban areas of Pakistan. Several novel recombinant forms have also been detected. This first report of CRF152_DG highlights the complex nature of the HIV epidemic in Pakistan and emphasizes the importance of continual molecular surveillance (ideally based on whole-genome sequences) of HIV.

2.
Signal Transduct Target Ther ; 9(1): 128, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797752

ABSTRACT

Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.


Subject(s)
Neoplasms , Receptors, Notch , Signal Transduction , Humans , Receptors, Notch/genetics , Receptors, Notch/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/drug therapy , Signal Transduction/genetics , Epithelial-Mesenchymal Transition/genetics , Molecular Targeted Therapy , Tumor Microenvironment/genetics , Tumor Microenvironment/drug effects
3.
Mol Cell Biochem ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519710

ABSTRACT

Liver cancer (LC) poses a significant global health challenge due to its high incidence and poor prognosis. Current systemic treatment options, such as surgery, chemotherapy, radiofrequency ablation, and immunotherapy, have shown limited effectiveness for advanced LC patients. Moreover, owing to the heterogeneous nature of LC, it is crucial to uncover more in-depth pathogenic mechanisms and develop effective treatments to address the limitations of the existing therapeutic modalities. Increasing evidence has revealed the crucial role of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in the pathogenesis of LC. The specific mechanisms driving the JAK-STAT pathway activation in LC, participate in a variety of malignant biological processes, including cell differentiation, evasion, anti-apoptosis, immune escape, and treatment resistance. Both preclinical and clinical investigations on the JAK-STAT pathway inhibitors have exhibited potential in LC treatment, thereby opening up avenues for the development of more targeted therapeutic strategies for LC. In this study, we provide an overview of the JAK-STAT pathway, delving into the composition, activation, and dynamic interplay within the pathway. Additionally, we focus on the molecular mechanisms driving the aberrant activation of the JAK-STAT pathway in LC. Furthermore, we summarize the latest advancements in targeting the JAK-STAT pathway for LC treatment. The insights presented in this review aim to underscore the necessity of research into the JAK-STAT signaling pathway as a promising avenue for LC therapy.

4.
mBio ; 15(3): e0334923, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38385695

ABSTRACT

CRF01_AE strains have been shown to form multiple transmission clusters in China, and some clusters have disparate pathogenicity in Chinese men who have sex with men. This study focused on other CRF01_AE clusters prevalent in heterosexual populations. The CD4+ T-cell counts from both cross-section data in National HIV Molecular Epidemiology Survey and seropositive cohort data were used to evaluate the pathogenicity of the CRF01_AE clusters and other HIV-1 sub-types. Their mechanisms of pathogenicity were evaluated by co-receptor tropisms, predicted by genotyping and confirmed with virus isolate phenotyping, as well as inflammation parameters. Our research elucidated that individuals infected with CRF01_AE clusters 1 and 2 exhibited significantly lower baseline CD4+ T-cell counts and greater CD4+ T-cell loss in cohort follow-up, compared with other HIV-1 sub-types and CRF01_AE clusters. The increased pathogenesis of cluster 1 or 2 was associated with higher CXCR4 tropisms, higher inflammation/immune activation, and increased pyroptosis. The protein structure modeling analysis revealed that the envelope V3 loop of clusters 1 and 2 viruses is favorable for CXCR4 co-receptor usage. Imbedded with the most mutating reverse transcriptase, HIV-1 is one of the most variable viruses. CRF01_AE clusters 1 and 2 have been found to have evolved into more virulent strains in regions with predominant heterosexual infections. The virulent strains increased the pressure for early diagnosis and treatment in HIV patients. To save more lives, HIV-1 surveillance systems should be upgraded from serology and genotyping to phenotyping, which could support precision interventions for those infected by virulent viruses. IMPORTANCE: Retroviruses swiftly adapt, employing error-prone enzymes for genetic and phenotypic evolution, optimizing survival strategies, and enhancing virulence levels. HIV-1 CRF01_AE has persistently undergone adaptive selection, and cluster 1 and 2 infections display lower counts and fast loss of CD4+ T cells than other HIV-1 sub-types and CRF01_AE clusters. Its mechanisms are associated with increased CXCR4 tropism due to an envelope structure change favoring a tropism shift from CCR5 to CXCR4, thereby shaping viral phenotype features and impacting pathogenicity. This underscores the significance of consistently monitoring HIV-1 genetic evolution and phenotypic transfer to see whether selection bias across risk groups alters the delicate balance of transmissible versus toxic trade-offs, since virulent strains such as CRF01_AE clusters 1 and 2 could seriously compromise the efficacy of antiviral treatment. Only through such early warning and diagnostic services can precise antiviral treatments be administered to those infected with more virulent HIV-1 strains.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Sexual and Gender Minorities , Male , Humans , HIV-1/genetics , Homosexuality, Male , Genotype , CD4-Positive T-Lymphocytes , China/epidemiology , Inflammation , Antiviral Agents , Phylogeny
5.
Sci Rep ; 14(1): 4926, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38418897

ABSTRACT

The peroxisome proliferator-activated receptor (PPAR) signaling pathway plays a crucial role in systemic cell metabolism, energy homeostasis and immune response inhibition. However, its significance in hepatocellular carcinoma (HCC) has not been well documented. In our study, based on the RNA sequencing data of HCC, consensus clustering analyses were performed to identify PPAR signaling pathway-related molecular subtypes, each of which displaying varying survival probabilities and immune infiltration status. Following, a prognostic prediction model of HCC was developed by using the random survival forest method and Cox regression analysis. Significant difference in survival outcome, immune landscape, drug sensitivity and pathological features were observed between patients with different prognosis. Additionally, decision tree and nomogram models were adopted to optimize the prognostic prediction model. Furthermore, the robustness of the model was verified through single-cell RNA-sequencing data. Collectively, this study systematically elucidated that the PPAR signaling pathway-related prognostic model has good predictive efficacy for patients with HCC. These findings provide valuable insights for further research on personalized treatment approaches for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Prognosis , Carcinoma, Hepatocellular/genetics , Peroxisome Proliferator-Activated Receptors/genetics , Liver Neoplasms/genetics , Nomograms
6.
Cell Commun Signal ; 21(1): 359, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38111040

ABSTRACT

RNA methylation modification plays a crucial role as an epigenetic regulator in the oncogenesis of hepatocellular carcinoma (HCC). Numerous studies have investigated the molecular mechanisms underlying the methylation of protein-coding RNAs in the progression of HCC. Beyond their impact on mRNA, methylation modifications also influence the biological functions of non-coding RNAs (ncRNAs). Here, we present an advanced and comprehensive overview of the interplay between methylation modifications and ncRNAs in HCC, with a specific focus on their potential implications for the tumor immune microenvironment. Moreover, we summarize promising therapeutic targets for HCC based on methylation-related proteins. In the future, a more profound investigation is warranted to elucidate the effects of ncRNA methylation modifications on HCC pathogenesis and devise valuable intervention strategies. Video Abstract.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , RNA Methylation , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Methylation , RNA/metabolism , Tumor Microenvironment
7.
Emerg Microbes Infect ; 12(2): 2271065, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37824698

ABSTRACT

ABBREVIATIONS: AIDS: acquired immune deficiency syndrome; CI: confidence interval; EPHI: Ethiopian Public Health Institute; HAART: highly active antiretroviral therapy; HIV: human immunodeficiency virus; HR: hazard ratio; Mg/dl: milligram per deciliter; TB: tuberculosis; PCP: pneumocystis carinii pneumonia; ZJU: Zhejiang University.


Subject(s)
AIDS-Related Opportunistic Infections , Acquired Immunodeficiency Syndrome , HIV Infections , Neoplasms , Humans , Female , Ethiopia/epidemiology , AIDS-Related Opportunistic Infections/epidemiology , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/epidemiology , Acquired Immunodeficiency Syndrome/drug therapy , Antiretroviral Therapy, Highly Active
8.
Cell Metab ; 35(8): 1304-1326, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37352864

ABSTRACT

Tryptophan (Trp) metabolism primarily involves the kynurenine, 5-hydroxytryptamine, and indole pathways. A variety of bioactive compounds produced via Trp metabolism can regulate various physiological functions, including inflammation, metabolism, immune responses, and neurological function. Emerging evidence supports an intimate relationship between Trp metabolism disorder and diseases. The levels or ratios of Trp metabolites are significantly associated with many clinical features. Additionally, studies have shown that disease progression can be controlled by modulating Trp metabolism. Indoleamine-2,3-dioxygenase, Trp-2,3-dioxygenase, kynurenine-3-monooxygenase, and Trp hydroxylase are the rate-limiting enzymes that are critical for Trp metabolism. These key regulatory enzymes can be targeted for treating several diseases, including tumors. These findings provide novel insights into the treatment of diseases. In this review, we have summarized the recent research progress on the role of Trp metabolites in health and disease along with their clinical applications.


Subject(s)
Dioxygenases , Neoplasms , Humans , Kynurenine/metabolism , Tryptophan/metabolism
9.
Signal Transduct Target Ther ; 8(1): 204, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208335

ABSTRACT

The Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved mechanism of transmembrane signal transduction that enables cells to communicate with the exterior environment. Various cytokines, interferons, growth factors, and other specific molecules activate JAK-STAT signaling to drive a series of physiological and pathological processes, including proliferation, metabolism, immune response, inflammation, and malignancy. Dysregulated JAK-STAT signaling and related genetic mutations are strongly associated with immune activation and cancer progression. Insights into the structures and functions of the JAK-STAT pathway have led to the development and approval of diverse drugs for the clinical treatment of diseases. Currently, drugs have been developed to mainly target the JAK-STAT pathway and are commonly divided into three subtypes: cytokine or receptor antibodies, JAK inhibitors, and STAT inhibitors. And novel agents also continue to be developed and tested in preclinical and clinical studies. The effectiveness and safety of each kind of drug also warrant further scientific trials before put into being clinical applications. Here, we review the current understanding of the fundamental composition and function of the JAK-STAT signaling pathway. We also discuss advancements in the understanding of JAK-STAT-related pathogenic mechanisms; targeted JAK-STAT therapies for various diseases, especially immune disorders, and cancers; newly developed JAK inhibitors; and current challenges and directions in the field.


Subject(s)
Autoimmune Diseases , Janus Kinase Inhibitors , Neoplasms , Humans , Janus Kinases/metabolism , Signal Transduction/genetics , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Autoimmune Diseases/drug therapy , Autoimmune Diseases/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Cytokines/metabolism , Cognition
10.
Adv Sci (Weinh) ; 10(16): e2207074, 2023 06.
Article in English | MEDLINE | ID: mdl-37013458

ABSTRACT

Kynurenine derivative 3-hydroxyanthranilic acid (3-HAA) is known to regulate the immune system and exhibit anti-inflammatory activity by inhibiting T-cell cytokine secretion and influencing macrophage activity. However, the definite role of 3-HAA in the immunomodulation of hepatocellular carcinoma (HCC) is largely unexplored. An orthotopic HCC model and treated with 3-HAA by intraperitoneal injection is developed. Furthermore, cytometry by time-of-flight (CyTOF) and single-cell RNA sequencing (scRNA-seq) analyses are carried out to define the immune landscape of HCC. It is found that 3-HAA treatment can significantly suppress tumor growth in the HCC model and alter the level of various cytokines in plasma. CyTOF data shows that 3-HAA significantly increases the percentage of F4/80hi CX3CR1lo Ki67lo MHCIIhi macrophages and decreases the percentage of F4/80lo CD64+ PD-L1lo macrophages. scRNA-seq analyses demonstrate that 3-HAA treatment is proved to regulate the function of M1 macrophages, M2 macrophages, and proliferating macrophages. Notably, 3-HAA inhibits the proinflammatory factors TNF and IL-6 in multiple cell subsets, including resident macrophages, proliferating macrophages, and pDCs. This study reveals the landscape of immune cell subsets in HCC in response to 3-HAA, indicating that 3-HAA may be a promising therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Single-Cell Gene Expression Analysis , Macrophages , Cytokines/pharmacology
11.
Cell Rep Med ; 4(1): 100884, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36652905

ABSTRACT

It is estimated that in the future, the number of new cancer cases worldwide will exceed the 19.3 million recorded in 2020, and the number of deaths will exceed 10 million. Cancer remains the leading cause of human mortality and lagging socioeconomic development. Intratumoral microbes have been revealed to exist in many cancer types, including pancreatic, colorectal, liver, esophageal, breast, and lung cancers. Intratumoral microorganisms affect not only the host immune system, but also the effectiveness of tumor chemotherapy. This review concentrates on the characteristics and roles of intratumoral microbes in various tumors. In addition, the potential of therapies targeting intratumoral microbes, as well as the main challenges currently delaying these therapies, are explored. Furthermore, we briefly summarize existing technical methods used to characterize intratumoral microbes. We hope to provide ideas for exploring intratumoral microbes as potential biomarkers and targets for tumor diagnosis, treatment, and prognostication.


Subject(s)
Lung Neoplasms , Microbiota , Humans
12.
Front Immunol ; 13: 1035950, 2022.
Article in English | MEDLINE | ID: mdl-36389715

ABSTRACT

Natural killer T cells (NKTs) are an important part of the immune system. Since their discovery in the 1990s, researchers have gained deeper insights into the physiology and functions of these cells in many liver diseases. NKT cells are divided into two subsets, type I and type II. Type I NKT cells are also named iNKT cells as they express a semi-invariant T cell-receptor (TCR) α chain. As part of the innate immune system, hepatic iNKT cells interact with hepatocytes, macrophages (Kupffer cells), T cells, and dendritic cells through direct cell-to-cell contact and cytokine secretion, bridging the innate and adaptive immune systems. A better understanding of hepatic iNKT cells is necessary for finding new methods of treating liver disease including autoimmune liver diseases, alcoholic liver diseases (ALDs), non-alcoholic fatty liver diseases (NAFLDs), and liver tumors. Here we summarize how iNKT cells are activated, how they interact with other cells, and how they function in the presence of liver disease.


Subject(s)
Natural Killer T-Cells , Non-alcoholic Fatty Liver Disease , Humans , Receptors, Antigen, T-Cell
13.
14.
Front Cell Dev Biol ; 10: 830702, 2022.
Article in English | MEDLINE | ID: mdl-35465315

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a class of metabolic-associated liver diseases. Aberrant lipid consumption plays an important role in NAFLD pathogenesis. It has been shown CD1d can bind to multiple different lysophospholipids and associated with NAFLD progression. However, the mechanism of CD1d regulation in NAFLD is not completely understood. In this study, we established a NAFLD mouse model by feeding C57/BL6J mice a high-fat diet (HFD) for 24 weeks. Subsequently, we performed integrated transcriptomics and metabolomics analyses to thoroughly probe the role of CD1d in NAFLD progression. In the present study, we demonstrate that CD1d expression was significantly decreased in our murine model of NAFLD. Additionally, we show CD1d knockdown (CD1d KO) in HFD-fed wild-type (WT) mice induced NAFLD, which resulted in weight gain, exaggerated liver injury, and hepatic steatosis. We uncover the crucial roles of CD1d deficiency results in accumulated lipid accumulation. We further explored the CD1d deficiency in NAFLD regarding the transcriptional landscapes, microbiota environment, metabolomics change, and transcriptomics differences. In conclusion, our data demonstrate CD1d plays an important role in NAFLD pathogenesis and may represent a potential therapeutic target for the further therapy.

15.
Signal Transduct Target Ther ; 7(1): 142, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484099

ABSTRACT

Cancer is one of the major diseases threatening human life and health worldwide. Epigenetic modification refers to heritable changes in the genetic material without any changes in the nucleic acid sequence and results in heritable phenotypic changes. Epigenetic modifications regulate many biological processes, such as growth, aging, and various diseases, including cancer. With the advancement of next-generation sequencing technology, the role of RNA modifications in cancer progression has become increasingly prominent and is a hot spot in scientific research. This review studied several common RNA modifications, such as N6-methyladenosine, 5-methylcytosine, and pseudouridine. The deposition and roles of these modifications in coding and noncoding RNAs are summarized in detail. Based on the RNA modification background, this review summarized the expression, function, and underlying molecular mechanism of these modifications and their regulators in cancer and further discussed the role of some existing small-molecule inhibitors. More in-depth studies on RNA modification and cancer are needed to broaden the understanding of epigenetics and cancer diagnosis, treatment, and prognosis.


Subject(s)
Neoplasms , Pseudouridine , 5-Methylcytosine/metabolism , Adenosine/analogs & derivatives , Adenosine/genetics , Adenosine/metabolism , Humans , Neoplasms/genetics , Pseudouridine/genetics , Pseudouridine/metabolism , RNA Processing, Post-Transcriptional/genetics , RNA, Untranslated
16.
Front Cell Dev Biol ; 10: 834859, 2022.
Article in English | MEDLINE | ID: mdl-35356289

ABSTRACT

Hepatocellular carcinoma (HCC) is a common primary liver cancer with ∼750,000 annual incidence rates globally. PGE2, usually known as a pro-inflammatory cytokine, is over-expressed in various human malignancies including HCC. PGE2 binds to EP receptors in HCC cells to influence tumorigenesis or enhance tumor progression through multiple pathways such as EP1-PKC-MAPK, EP2-PKA-GSK3ß, and EP4-PKA-CREB. In the progression of hepatocellular carcinoma, PGE2 can promote the proliferation and migration of liver cancer cells by affecting hepatocytes directly and the tumor microenvironment (TME) through ERK/COX-2/PGE2 signal pathway in hepatic stellate cells (HSC). For the treatment of hepatocellular carcinoma, there are drugs such as T7 peptide and EP1 antagonist ONO-8711 targeting Cox-2/PGE2 axis to inhibit tumor progression. In conclusion, PGE2 has been shown to be a traditional target with pleiotropic effects in tumorigenesis and progression of HCC that could be used to develop a new potential clinical impact. For the treatment study focusing on the COX-PGE2 axis, the exclusive usage of non-steroidal anti-inflammatory agents (NSAIDs) or COX-2-inhibitors may be replaced by a combination of selective EP antagonists and traditional anti-tumoral drugs to alleviate severe side effects and achieve better outcomes.

17.
Ann Transl Med ; 10(2): 109, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35282052

ABSTRACT

Objective: To summarize the structure, regulatory mechanism, and target genes of hypoxia-inducible factor-1 alpha (HIF-1α) and to comprehensively expound its role in various chronic liver diseases, thus providing a new perspective on the treatment of various liver diseases. Background: Liver disease, especially chronic liver disease, is a long-standing public health problem; the mortality rate due to end-stage cirrhosis and liver cancer is high worldwide and continues to grow. Moreover, there is a lack of effective targeted therapy for most liver diseases, such as fatty liver, alcoholic liver disease (ALD), and advanced liver cancer, for which drug treatment approaches are extremely limited. As the liver is a highly aerobic organ, an insufficient oxygen supply can induce a series of diseases, and HIF proteins play an important role in these processes. Methods: Literature on HIF-1α and its effects on various liver diseases were extensively searched, and the feasibility and challenges of targeting HIF-1α to treat various chronic liver diseases were analyzed. Conclusions: HIF-1α is widely involved in the occurrence, development, and prognosis of ALD, nonalcoholic fatty liver disease (NAFLD), acetaminophen (APAP)-induced liver injury (AILI), viral hepatitis, hepatocellular carcinoma (HCC), and other liver diseases. HIF-1α participates in complex signaling pathways, and its expression is regulated in many liver diseases. These results suggest the feasibility and clinical significance of targeting HIF-1α to treat liver diseases.

18.
Int J Gen Med ; 15: 353-358, 2022.
Article in English | MEDLINE | ID: mdl-35027843

ABSTRACT

BACKGROUND: PPAT (phosphoribosyl pyrophosphate amido transferase) catalyzes the first committed step of de novo purine biosynthesis and is a key regulatory point in the biosynthesis of nascent purine nucleotides. However, the clinical significance and biologic role of PPAT in hepatocellular carcinoma (HCC) remain unknown. METHODS: We compared the expression of PPAT in carcinomatous and precancerous hepatocellular carcinoma tissues by immunohistochemistry in 90 cases of HCC. Correlation analysis was also made on clinical data, survival, classification, and staging. RESULTS: The expression of PPAT in HCC tumor tissues is significantly higher than that in adjacent normal tissues. The results of the Kaplan-Meier analysis showed that HCC patients with high PPAT expression survived shorter than those with low PPAT expression. Moreover, the expression of PPAT was significantly associated with the tumor grade (P=0.014), PD-L1 (P<0.001), and CTLA4 (P=0.003). The later grade of the tumor, the higher the expression of PPAT. In the PD-L1 high expression group, PPAT is also highly expressed. CONCLUSION: Our study demonstrated that PPAT expression might be included in the process of carcinogenesis and prognosis. Hence, PPAT could be served as a new prognostic biomarker for patients of HCC.

19.
Anal Cell Pathol (Amst) ; 2021: 8900122, 2021.
Article in English | MEDLINE | ID: mdl-34804779

ABSTRACT

In addition to playing a pivotal role in cellular energetics and biosynthesis, mitochondrial components are key operators in the regulation of cell death. In addition to apoptosis, necrosis is a highly relevant form of programmed liver cell death. Differential activation of specific forms of programmed cell death may not only affect the outcome of liver disease but may also provide new opportunities for therapeutic intervention. This review describes the role of mitochondria in cell death and the mechanism that leads to chronic liver hepatitis and liver cirrhosis. We focus on mitochondrial-driven apoptosis and current knowledge of necroptosis and discuss therapeutic strategies for targeting mitochondrial-mediated cell death in liver diseases.


Subject(s)
Apoptosis/physiology , Liver Diseases/pathology , Mitochondria/physiology , Necroptosis/physiology , Animals , Humans
20.
Cancer Cell Int ; 21(1): 583, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34717631

ABSTRACT

Recently, long noncoding RNAs (lncRNAs) have attracted great attention from researchers. LncRNAs are non-protein-coding RNAs of more than 200 nucleotides in length. Multiple studies have been published on the relationship between lncRNA expression and the progression of human diseases. LncRNA small nucleolar RNA host gene 4 (SNHG4), a member of the lncRNA SNHG family, is abnormally expressed in a variety of human diseases, including gastric cancer, renal cell carcinoma, glioblastoma, neuroblastoma, prostate cancer, colorectal cancer, osteosarcoma, cervical cancer, liver cancer, lung cancer, non-small-cell lung cancer, neonatal pneumonia, diabetic retinopathy, neuropathic pain, acute cerebral infarction, acute myeloid leukaemia, and endometriosis. In this paper, the structure of SNHG4 is first introduced, and then studies in humans, animal models and cells are summarized to highlight the expression and function of SNHG4 in the above diseases. In addition, the specific mechanism of SNHG4 as a competing endogenous RNA (ceRNA) is discussed. The findings indicate that SNHG4 can be used as a biomarker for disease prognosis evaluation and as a potential target for disease diagnosis and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...