Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Discov ; 10(1): 38, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565878

ABSTRACT

Early endosomes (EEs) are crucial in cargo sorting within vesicular trafficking. While cargoes destined for degradation are retained in EEs and eventually transported to lysosomes, recycled cargoes for the plasma membrane (PM) or the Golgi undergo segregation into specialized membrane structures known as EE buds during cargo sorting. Despite this significance, the molecular basis of the membrane expansion during EE bud formation has been poorly understood. In this study, we identify a protein complex comprising SHIP164, an ATPase RhoBTB3, and a retromer subunit Vps26B, which promotes the formation of EE buds at Golgi-EE contacts. Our findings reveal that Vps26B acts as a novel Rab14 effector, and Rab14 activity regulates the association of SHIP164 with EEs. Depletion of SHIP164 leads to enlarged Rab14+ EEs without buds, a phenotype rescued by wild-type SHIP164 but not the lipid transfer-defective mutants. Suppression of RhoBTB3 or Vps26B mirrors the effects of SHIP164 depletion. Together, we propose a lipid transport-dependent pathway mediated by the RhoBTB3-SHIP164-Vps26B complex at Golgi-EE contacts, which is essential for EE budding.

2.
Cell Death Differ ; 30(1): 94-110, 2023 01.
Article in English | MEDLINE | ID: mdl-35962186

ABSTRACT

In metazoans the endoplasmic reticulum (ER) undergoes extensive remodeling during the cell cycle. The endosomal sorting complexes required for transport (ESCRT) protein CHMP7 coordinates ESCRT-III dependent nuclear envelope reformation during mitotic exit. However, potential roles of ER-associated CHMP7 at non-mitotic stages remain unclear. Here we discovered a new role of CHMP7 in mediating three-way ER and ER-mitochondrial membrane contact sites (MCSs). We showed that CHMP7 localizes to multiple cellular membranes including the ER, mitochondrial-associated membranes (MAMs) and the outer mitochondrial membrane (OMM) via its N-terminal membrane-binding domain. CHMP7 undergoes dynamic assembly at three-way ER junctions and ER-mitochondrial MCSs through hydrophobic interactions among α helix-1 and α helix-2 of the C-terminal CHMP-like domain, which was required for tethering different organelles in vivo. Furthermore, CHMP7 mediates the formation of three-way ER junctions in parallel with Atlastins (ATLs). Importantly, CHMP7 also regulates ER-mitochondrial interactions and its depletion affects mitochondrial division independently of ESCRT complex. Taken together, our results suggest a direct role of CHMP7 in the formation of the ER contacts in interphase.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Nuclear Envelope , Endosomal Sorting Complexes Required for Transport/metabolism , Cell Division , Nuclear Envelope/metabolism , Mitochondria/metabolism , Endoplasmic Reticulum/metabolism
3.
J Cell Sci ; 135(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-33912962

ABSTRACT

Membrane contact sites (MCSs) between the endoplasmic reticulum (ER) and late endosomes/lysosomes (LE/lys) are emerging as critical hubs for diverse cellular events, and changes in their extents are linked to severe neurological diseases. While recent studies show that the synaptotagmin-like mitochondrial-lipid-binding (SMP) domain-containing protein PDZD8 may mediate the formation of ER-LE/lys MCSs, the cellular functions of PDZD8 remain largely elusive. Here, we attempt to investigate the lipid transfer activities of PDZD8 and the extent to which its cellular functions depend on its lipid transfer activities. In accordance with recent studies, we demonstrate that PDZD8 is a protrudin (ZFYVE27)-interacting protein and that PDZD8 acts as a tether at ER-LE/lys MCSs. Furthermore, we discover that the SMP domain of PDZD8 binds glycerophospholipids and ceramides both in vivo and in vitro, and that the SMP domain can transport lipids between membranes in vitro. Functionally, PDZD8 is required for LE/lys positioning and neurite outgrowth, which is dependent on the lipid transfer activity of the SMP domain.


Subject(s)
Endoplasmic Reticulum , Endosomes , Lipids , Lysosomes , Neuronal Outgrowth
4.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 8): o1611, 2008 Jul 31.
Article in English | MEDLINE | ID: mdl-21203304

ABSTRACT

The mol-ecule of the title compound, C(18)H(17)N(7)S, is non-planar, with a dihedral angle of 71.4 (4)° between the two triazole rings, and an angle of 15.5 (3)° between the two phenyl rings. An intra-molecular N-H⋯S hydrogen bond forms a five-membered ring.

5.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 8): o1612, 2008 Jul 31.
Article in English | MEDLINE | ID: mdl-21203305

ABSTRACT

In the title mol-ecule, C(17)H(16)N(4)O, the triazole ring makes dihedral angles of 29.00 (1) and 77.74 (1)°, respectively, with the phenyl and benzene rings. In the crystal structure, inter-molecular N-H⋯O hydrogen bonds link the mol-ecules into chains extending along the c axis.

SELECTION OF CITATIONS
SEARCH DETAIL
...