Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(15)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751106

ABSTRACT

To control the COVID-19 pandemic and prevent its resurgence in areas preparing for a return of economic activities, a method for a rapid, simple, and inexpensive point-of-care diagnosis and mass screening is urgently needed. We developed and evaluated a one-step colorimetric reverse-transcriptional loop-mediated isothermal amplification assay (COVID-19-LAMP) for detection of SARS-CoV-2, using SARS-CoV-2 isolate and respiratory samples from patients with COVID-19 (n = 223) and other respiratory virus infections (n = 143). The assay involves simple equipment and techniques and low cost, without the need for expensive qPCR machines, and the result, indicated by color change, is easily interpreted by naked eyes. COVID-19-LAMP can detect SARS-CoV-2 RNA with detection limit of 42 copies/reaction. Of 223 respiratory samples positive for SARS-CoV-2 by qRT-PCR, 212 and 219 were positive by COVID-19-LAMP at 60 and 90 min (sensitivities of 95.07% and 98.21%) respectively, with the highest sensitivities among nasopharyngeal swabs (96.88% and 98.96%), compared to sputum/deep throat saliva samples (94.03% and 97.02%), and throat swab samples (93.33% and 98.33%). None of the 143 samples with other respiratory viruses were positive by COVID-19-LAMP, showing 100% specificity. Samples with higher viral load showed shorter detection time, some as early as 30 min. This inexpensive, highly sensitive and specific COVID-19-LAMP assay can be useful for rapid deployment as mobile diagnostic units to resource-limiting areas for point-of-care diagnosis, and for unlimited high-throughput mass screening at borders to reduce cross-regional transmission.


Subject(s)
Betacoronavirus/genetics , Colorimetry/methods , Coronavirus Infections/diagnosis , Mass Screening/economics , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , Betacoronavirus/isolation & purification , COVID-19 , Colorimetry/economics , Coronavirus Infections/virology , Humans , Limit of Detection , Nasopharynx/virology , Nucleic Acid Amplification Techniques/methods , Pandemics , Pneumonia, Viral/virology , Point-of-Care Systems , RNA, Viral/metabolism , SARS-CoV-2 , Viral Load
2.
Emerg Infect Dis ; 26(12): 2961-2965, 2020 12.
Article in English | MEDLINE | ID: mdl-32730733

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 did not replicate efficiently in 13 bat cell lines, whereas severe acute respiratory syndrome coronavirus replicated efficiently in kidney cells of its ancestral host, the Rhinolophus sinicus bat, suggesting different evolutionary origins. Structural modeling showed that RBD/RsACE2 binding may contribute to the differential cellular tropism.


Subject(s)
SARS-CoV-2/physiology , Severe acute respiratory syndrome-related coronavirus/physiology , Viral Tropism/genetics , Animals , COVID-19 , Chiroptera/virology , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/physiology , Pandemics , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...