Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
BMC Bioinformatics ; 24(1): 364, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759157

ABSTRACT

In this paper, a fuzzy hierarchical optimization framework is proposed for identifying potential antiviral targets for treating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the heart. The proposed framework comprises four objectives for evaluating the elimination of viral biomass growth and the minimization of side effects during treatment. In the application of the framework, Dulbecco's modified eagle medium (DMEM) and Ham's medium were used as uptake nutrients on an antiviral target discovery platform. The prediction results from the framework reveal that most of the antiviral enzymes in the aforementioned media are involved in fatty acid metabolism and amino acid metabolism. However, six enzymes involved in cholesterol biosynthesis in Ham's medium and three enzymes involved in glycolysis in DMEM are unable to eliminate the growth of the SARS-CoV-2 biomass. Three enzymes involved in glycolysis, namely BPGM, GAPDH, and ENO1, in DMEM combine with the supplemental uptake of L-cysteine to increase the cell viability grade and metabolic deviation grade. Moreover, six enzymes involved in cholesterol biosynthesis reduce and fail to reduce viral biomass growth in a culture medium if a cholesterol uptake reaction does not occur and occurs in this medium, respectively.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cholesterol
2.
J Taiwan Inst Chem Eng ; 133: 104273, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35186172

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has caused a substantial increase in mortality and economic and social disruption. The absence of US Food and Drug Administration-approved drugs for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the need for new therapeutic drugs to combat COVID-19. METHODS: The present study proposed a fuzzy hierarchical optimization framework for identifying potential antiviral targets for COVID-19. The objectives in the decision-making problem were not only to evaluate the elimination of the virus growth, but also to minimize side effects causing treatment. The identified candidate targets could promote processes of drug discovery and development. SIGNIFICANT FINDINGS: Our gene-centric method revealed that dihydroorotate dehydrogenase (DHODH) inhibition could reduce viral biomass growth and metabolic deviation by 99.4% and 65.6%, respectively, and increase cell viability by 70.4%. We also identified two-target combinations that could completely block viral biomass growth and more effectively prevent metabolic deviation. We also discovered that the inhibition of two antiviral metabolites, cytidine triphosphate (CTP) and uridine-5'-triphosphate (UTP), exhibits effects similar to those of molnupiravir, which is undergoing phase III clinical trials. Our predictions also indicate that CTP and UTP inhibition blocks viral RNA replication through a similar mechanism to that of molnupiravir.

SELECTION OF CITATIONS
SEARCH DETAIL
...