Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng Part C Methods ; 14(2): 149-56, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18489245

ABSTRACT

Recent studies have shown that mesenchymal stem cells (MSC) with the potential for cell-mediated therapies and tissue engineering applications can be isolated from extracted dental tissues. Here, we investigated the collection, processing, and cryobiological characteristics of MSC from human teeth processed under current good tissue practices (cGTP). Viable dental pulp-derived MSC (DPSC) cultures were isolated from 31 of 40 teeth examined. Of eight DPSC cultures examined more thoroughly, all expressed appropriate cell surface markers and underwent osteogenic, adipogenic, and chondrogenic differentiation in appropriate differentiation medium, thus meeting criteria to be called MSC. Viable DPSC were obtained up to 120 h postextraction. Efficient recovery of DPSC from cryopreserved intact teeth and second-passage DPSC cultures was achieved. These studies indicate that DPSC isolation is feasible for at least 5 days after tooth extraction, and imply that processing immediately after extraction may not be required for successful banking of DPSC. Further, the recovery of viable DPSC after cryopreservation of intact teeth suggests that minimal processing may be needed for the banking of samples with no immediate plans for expansion and use. These initial studies will facilitate the development of future cGTP protocols for the clinical banking of MSC.


Subject(s)
Cryopreservation/methods , Dental Pulp/cytology , Mesenchymal Stem Cells/cytology , Tissue Engineering/methods , Adipocytes/cytology , Adolescent , Adult , Cell Membrane/metabolism , Cell- and Tissue-Based Therapy/methods , Cells, Cultured , Chondrocytes/cytology , Flow Cytometry , Humans , Molar/pathology , Osteogenesis
2.
Biomaterials ; 23(5): 1283-93, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11808536

ABSTRACT

Internal architecture has a direct impact on the mechanical and biological behaviors of porous hydroxyapatite (HA) implant. However, traditional processing methods provide minimal control in this regard. To address the issue, we developed a new processing method combining image-based design and solid free-form fabrication. We have previously published the processing method showing fabricated HA implants and their chemical properties. This study characterized the mechanical and the in vivo performance of designed HA implants. Thirteen HA implants with orthogonal channels at 40% porosity were tested on an Instron machine. The compressive strength and compressive modulus measured were 30+/-8 MPa and 1.4+/-0.4 GPa, comparable to coralline porous HA. Twenty-four cylindrical HA implants with two architecture designs, orthogonal and radial channels, were implanted in the mandibles of four Yucatan minipigs for 5 and 9 weeks. Normal bone regeneration occurred in both groups. At 9 weeks, bone penetrated 1.4mm into both scaffold designs. The percent bone ingrowth in the penetration zone was higher in the orthogonal channel design but not statistically different due to the low number of samples. However, the overall shape of the regenerated bone tissue was significantly different. In the orthogonal design, bone and HA formed an interpenetrating matrix, while in the radial design, the regenerated bone formed an intact piece at the center of the implant. These preliminary results showed that controlling the overall geometry of the regenerated bone tissue is possible through the internal architectural design of the scaffolds.


Subject(s)
Biocompatible Materials/chemistry , Bone Substitutes , Durapatite/chemistry , Durapatite/pharmacology , Implants, Experimental , Animals , Mandible/physiology , Microscopy, Electron, Scanning , Swine, Miniature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...