Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Prosthodont ; 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38923252

ABSTRACT

PURPOSE: To explore the impact of zirconia types, coloring methods, and surface finishing on the color stability of monolithic multilayered polychromatic zirconia after artificial aging, including thermocycling and simulated toothbrushing. MATERIALS AND METHODS: Eighty square-shaped zirconia samples were divided into 2 types (M3Y-TZP and M6Y-PSZ), further categorized based on coloring methods (precolored and extrinsically colored) and surface finishing techniques (mechanical polishing or glazing). The color stability was assessed using the CIEDE2000 formula. Artificial aging was simulated via thermocycling and toothbrushing. All samples were analyzed with a spectrophotometer to determine the post-aging color changes (ΔE00). The ΔE00 were interpreted and classified using the 50:50% perceptibility threshold (PT) and the 50:50% acceptability threshold (AT). Comparisons between groups for ΔE00 differences were performed using three-way ANOVA, with pairwise comparisons facilitated by Fisher's protected least significant difference test, α = 0.05. RESULTS: The study results indicated significant impacts of zirconia type, coloring method, and surface finishing on color stability. The M6Y groups experienced significantly greater color changes (6.61 ± 1.63) compared to the M3Y groups (3.40 ± 2.24), p < 0.0001. For both types of zirconia, extrinsically colored samples exhibited significantly higher ΔE00 when mechanically polished (p = 0.004). However, surface finishing had no significant effect on ΔE00 in precolored samples of either zirconia material (p = 1.000). The evaluation and categorization of ΔE00 variations indicated that nearly all color changes in the M6Y groups, regardless of being precolored, extrinsically colored, polished, or glazed, were deemed extremely unacceptable (Grade 1). In contrast, the M3Y groups showed more acceptable results, with the majority of color changes classified as moderately unacceptable (Grade 3). CONCLUSIONS: The color stability of multilayered polychromatic zirconia is influenced by the type of material, extrinsic coloring, and the chosen surface treatment post-artificial aging. The translucent 6Y-PSZ exhibited lower color stability, especially with only mechanical polishing. For the fabrication of M3Y-TZP and 6Y-PSZ monolithic multilayered polychromatic zirconia restorations, extrinsic coloring should be paired with glazing to maintain color stability. Conversely, in the absence of extrinsic coloring, both glazing and mechanical polishing are effective in preserving color stability.

2.
J Prosthodont ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742795

ABSTRACT

PURPOSE: To examine the color stability of 3D-printed and milled, interim, and definitive, restorative materials after immersion in artificial saliva and wine for 1, 3, and 6 months. MATERIAL AND METHODS: The study used a 2 × 5 factorial design with 10 subgroups, including 2 immersion liquids (artificial saliva and wine) and 5 manufacturing technology and restorative material combinations (n = 10). Color measurements were taken using a contact-type digital spectrophotometer (CM-2600d Spectrophotometer; Konica Minolta Healthcare Americas Inc) before immersion and at 1 month (T1), 3 months (T3), and 6 months (T6) after immersion. The CIE2000 system was used to calculate quantitative measurements of color differences in ΔE00, and comparisons were made to the acceptability threshold (AT) and perceptibility threshold (PT). Repeated measures of ANOVA (α = 0.05) were used to compare differences in color changes between manufacturing technology/restorative material-immersion liquid combinations at T1, T3, and T6. RESULTS: To compare the effect of immersion liquid and time on the manufacturing technology/restorative material groups, the ΔE00 values were compared to the PT of 0.8 and the AT of 1.8. Wine caused significant color changes in ΔE00 values beyond the PT and AT values in all groups at all time intervals, except for the AT value of milled definitive crowns (hybrid nano-ceramic material). Wine immersion caused significant ΔE00 for all manufacturing technology/restorative material groups at all time intervals (1 month, 3 months, and 6 months) when compared to artificial saliva immersion (all p < 0.001). CONCLUSION: Upon exposure to artificial saliva, 80%-100% of samples from all groups remained within the acceptable and perceptible color change thresholds. The wine had significant chromogenic effects on all tested restorative materials, however, the milled definitive crowns (hybrid nano-ceramic material) showed the greatest color stability. For patients with heavy wine consumption, 3D-printed definitive crowns (hybrid ceramic-filled material) may show discoloration exceeding acceptable and perceptible color change limits.

3.
J Prosthodont ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305665

ABSTRACT

PURPOSE: To evaluate the effects of exposure protocol, voxel sizes, and artifact removal algorithms on the trueness of segmentation in various mandible regions using an artificial intelligence (AI)-based system. MATERIALS AND METHODS: Eleven dry human mandibles were scanned using a cone beam computed tomography (CBCT) scanner under differing exposure protocols (standard and ultra-low), voxel sizes (0.15 mm, 0.3 mm, and 0.45 mm), and with or without artifact removal algorithm. The resulting datasets were segmented using an AI-based system, exported as 3D models, and compared to reference files derived from a white-light laboratory scanner. Deviation measurement was performed using a computer-aided design (CAD) program and recorded as root mean square (RMS). The RMS values were used as a representation of the trueness of the AI-segmented 3D models. A 4-way ANOVA was used to assess the impact of voxel size, exposure protocol, artifact removal algorithm, and location on RMS values (α = 0.05). RESULTS: Significant effects were found with voxel size (p < 0.001) and location (p < 0.001), but not with exposure protocol (p = 0.259) or artifact removal algorithm (p = 0.752). Standard exposure groups had significantly lower RMS values than the ultra-low exposure groups in the mandible body with 0.3 mm (p = 0.014) or 0.45 mm (p < 0.001) voxel sizes, the symphysis with a 0.45 mm voxel size (p = 0.011), and the whole mandible with a 0.45 mm voxel size (p = 0.001). Exposure protocol did not affect RMS values at teeth and alveolar bone (p = 0.544), mandible angles (p = 0.380), condyles (p = 0.114), and coronoids (p = 0.806) locations. CONCLUSION: This study informs optimal exposure protocol and voxel size choices in CBCT imaging for true AI-based automatic segmentation with minimal radiation. The artifact removal algorithm did not influence the trueness of AI segmentation. When using an ultra-low exposure protocol to minimize patient radiation exposure in AI segmentations, a voxel size of 0.15 mm is recommended, while a voxel size of 0.45 mm should be avoided.

4.
J Prosthodont ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37924229

ABSTRACT

PURPOSE: To compare the accuracy of four digital scanning methods in duplicating a complete denture. MATERIAL AND METHODS: Four scanning methods were used: cone beam computed tomography (CBCT), Straumann desktop scanner (DS), Trios intraoral scanner (TIO), and Virtuo Vivo intraoral scanner (VVIO). Each method was used to duplicate all the surfaces of a printed complete denture. The denture was scanned 10 times in each group. The trueness (in root mean square, RMS) and precision (in standard deviation, SD) were calculated by comparing the combined dentition, denture extension, and intaglio surfaces with the reference file. One-way analysis of variance and F-tests were used to test statistical differences (α = 0.05). RESULTS: For the scanning accuracy of the whole denture, CBCT showed the highest RMS (0.249 ± 0.020 mm) and lowest trueness than DS (0.124 ± 0.014 mm p < 0.001), TIO (0.131 ± 0.006 mm p < 0.001), and VVIO (0.227 ± 0.020 mm p = 0.017), while DS and TIO showed smaller RMS than VVIO (p < 0.001). For the trueness of dentition, denture extension, and intaglio surfaces, CBCT also showed the highest mean RMS and lowest trueness among all groups (p < 0.001). DS and TIO had smaller mean RMS and higher trueness among all groups in all surfaces (p < 0.001, except VVIO in intaglio surface, p > 0.05). TIO had significantly lower within-group variability of RMS and highest precision compared to DS (p = 0.013), CBCT (p = 0.001), and VVIO (p < 0.001) in the combined surface. For dentition and denture extension surfaces, TIO showed similar within-group variability of RMS with the DS group (p > 0.05) and lower than CBCT and VVIO (p < 0.001). CONCLUSION: The 7 Series desktop scanner and Trios 4 intraoral scanner can duplicate dentures in higher trueness than CBCT and the Virtuo Vivo intraoral scanner. The Trios 4 intraoral scanner was more precise in the combined surfaces than other scanning methods, while the 7 Series desktop scanner and Trios 4 intraoral scanner were more precise in the denture extension surface.

5.
Int J Mol Sci ; 24(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37762698

ABSTRACT

Low back pain (LBP) is a common musculoskeletal complaint that can impede physical function and mobility. Current management often involves pain medication, but there is a need for non-pharmacological and non-invasive interventions. Soft tissue manipulation (STM), such as massage, has been shown to be effective in human subjects, but the molecular mechanisms underlying these findings are not well understood. In this paper, we evaluated potential changes in the soft tissue levels of more than thirty pro- or anti-inflammatory cytokines following instrument-assisted STM (IASTM) in rats with chronic, induced LBP using Complete Freund's Adjuvant. Our results indicate that IASTM is associated with reduced soft tissue levels of Regulated on Activation, Normal T cell Expressed and Secreted (RANTES)/Chemokine (C-C motif) ligand 5 (CCL5) and increased soft tissue levels of Interleukin (IL)-4, which are pro-inflammatory and anti-inflammatory factors, respectively, by 120 min post-treatment. IASTM was not associated with tissue-level changes in C-X-C Motif Chemokine Ligand (CXCL)-5/Lipopolysaccharide-Induced CXC Chemokine (LIX)-which is the murine homologue of IL-8, CXCL-7, Granulocyte-Macrophage-Colony Simulating Factor (GM-CSF), Intercellular Adhesion Molecule (ICAM)-1, IL1-Receptor Antagonist (IL-1ra), IL-6, Interferon-Inducible Protein (IP)-10/CXCL-10, L-selectin, Tumor Necrosis Factor (TNF)-α, or Vascular Endothelial Growth Factor (VEGF) at either 30 or 120 min post-treatment. Combined, our findings raise the possibility that IASTM may exert tissue-level effects associated with improved clinical outcomes and potentially beneficial changes in pro-/anti-inflammatory cytokines in circulation and at the tissue level.

6.
J Prosthodont ; 32(S1): 87-95, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36630654

ABSTRACT

PURPOSE: The study aimed to compare the tensile bond strength (TBS) of auto-polymerizing and heat-polymerizing denture reliners on the conventional (compression-molding and injection-molding) and computer-aided design and computer-aided manufacturing (milled and 3D-printed) denture base materials. MATERIALS AND METHODS: Eighty standard dogbone-shaped specimens were fabricated from four materials: compression-molding, injection-molding, milled, and 3D-printed denture base materials. A 3-mm cutoff was removed from each specimen at the midsection, and all specimens were reattached with either auto-polymerizing (n = 10) or heat-polymerizing (n = 10) reliner. The TBS was measured on the universal testing machine. A scanning electron microscope (SEM) was used to examine the fractured surfaces at cross sections to determine the dominant failure mode in each group. Two-way ANOVA was used to examine the effects of denture base material and reliner on the TBS (α = 0.05). Weibull survival analysis was also used to determine the survival probability curves. RESULTS: Heat-polymerizing reliner led to a higher TBS than the auto-polymerizing reliner, except in the compression-molding (p = 0.573) groups. Compression-molding denture base material connected with a heat-polymerizing reliner showed the highest TBS (29.8 ± 6.9 MPa), whereas 3D-printed denture base material connected with an auto-polymerizing reliner showed the lowest TBS (7.2 ± 0.9 MPa). The survival probability based on the Weibull model demonstrated that the compression-molding denture base material connected with either auto-polymerizing or heat-polymerizing reliners had the longest survival time to failure, whereas 3D-printed denture base material relined with auto-polymerizing reline material showed the shortest survival time to failure. Under the SEM, the compression-molding groups demonstrated that the failure modes were mixed but predominantly cohesive. The injection-molding and milled groups showed predominantly adhesive failures at the denture base-reline material interfaces. The dominant mode of failure in the 3D-printed groups was cohesive failures within the bonding adhesive. CONCLUSIONS: Although the heat-polymerizing reliner led to a higher TBS than the auto-polymerizing reliner in most denture base materials, the compression-molding denture base material can achieve high TBS with both reliners. When the auto-polymerizing reliner is used with 3D-printed denture base material, clinicians should be aware of lower TBS value and possible cohesive failures, and the detachment of the reliner from the denture base.


Subject(s)
Acrylic Resins , Hot Temperature , Acrylic Resins/chemistry , Denture Bases , Materials Testing , Computer-Aided Design , Tensile Strength
7.
J Prosthet Dent ; 129(1): 213-219, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34116838

ABSTRACT

STATEMENT OF PROBLEM: Anatomic-contour zirconia prostheses are usually cemented with resin cement. However, information regarding the effects of the zirconia shade and thicknesses on the translucency of the prosthesis, the intensity of the transmitted light beneath the prosthesis, and the subsequent degree of conversion in the resin cement is sparse. PURPOSE: The purpose of this in vitro study was to investigate the translucency parameter in 3 anatomic-contour zirconia specimens of 2 shades at 5 different thicknesses and to investigate the transmitted light intensity and degree of conversion of the resin cement beneath the ceramic specimens by using a traditional zirconia and a lithium disilicate glass-ceramic as controls. MATERIAL AND METHODS: Ceramic specimens from 1 anatomic-contour zirconia in a generic shade (CAP FZ) and 2 anatomic-contour zirconias in A2 shade (Zirlux and Luxisse) were used. Lithium disilicate in HT A2 shade (IPS e.max CAD) and traditional zirconia in a generic shade (CAP QZ) were used as controls. A total of 125 ceramic specimens (n=25) were fabricated to a final specimen dimension of 12×12 mm and in thicknesses of 1.0, 1.25, 1.5, 1.75, and 2.0 mm according to the manufacturers' recommendations. The CIELab color space for all specimens placed against a white and black background was measured with a spectrophotometer (CM-2600D), and the translucency parameters were calculated for the materials at various thicknesses. A light-polymerizing unit (DEMI LED) was used to polymerize the resin cement (Variolink II) placed beneath the ceramic specimens. Transmitted light intensity from the polymerization unit beneath the ceramic specimens was measured by using a spectrophotometer (MARC Resin Calibrator), and the transmittance of each specimen was calculated. The coefficient of absorption of each material was calculated from the regression analysis between the natural log of transmittance and specimen thickness. The degree of conversion of resin cement was measured by using a Fourier transformation infrared (FTIR) spectrophotometer. The results were analyzed by using 2-way ANOVA (α=.05). The relationship between the transmittance and the translucency parameter was evaluated by plotting the transmittance against the translucency parameter value of each specimen. RESULTS: The translucency parameter decreased with increasing thickness in all 5 material groups. All anatomic-contour zirconia had lower translucency parameters than e.max CAD (P<.001). The same results were found for the intensity of the transmitted light (P<.001). Both A2 shade anatomic-contour zirconia (Zirlux and Luxisse) showed significantly lower light transmittance than a generic shade anatomic-contour zirconia (CAP FZ) (P<.001). The coefficients of absorption were found to range from 0.63 to 1.72 mm-1, and reflectance from 0.10 to 0.25. The results from the degree of conversion of resin cement after polymerization through 1 to 2 mm of specimens showed a significantly higher degree of conversion in the e.max group than in all other groups (P<.001). The correlation between translucency parameter and the intensity of the transmitted light suggested that the relationship was shade dependent. CONCLUSIONS: The translucency parameter and the transmitted light intensity of ceramic material were influenced by the type of ceramic and the shade and thickness of the ceramic. The combined effects of layer thickness and the intensity of the transmitted light in the A2 shade anatomic-contour zirconia (Zirlux and Luxisse) resulted in a lower degree of conversion in resin cement than in a generic shade anatomic-contour zirconia (CAP FZ) at layer thicknesses of 1.75 and 2 mm.


Subject(s)
Dental Porcelain , Resin Cements , Resin Cements/therapeutic use , Color , Materials Testing , Ceramics/therapeutic use , Light , Surface Properties
8.
J Prosthodont ; 32(8): 697-705, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36227731

ABSTRACT

PURPOSE: To investigate the effects of the manufacturing technologies on the surface (cameo and intaglio) accuracy (trueness and precision) of computer-aided design and computer-aided manufacturing (CAD-CAM) occlusal splints. MATERIALS AND METHODS: The digital design of the master occlusal splint was designed in a CAD software program. Six groups (n = 10) were tested in this study, including Group 1 - Milling (Wax), Group 2 - Heat-polymerizing, Group 3 - Milling (M series), Group 4 - Milling (DWX-51/52D), Group 5 - 3D-printing (Cares P30), and Group 6 - 3D-printing (M2). The study samples were placed in a scanning jig fabricated from putty silicone and Type III dental stone. The study samples were then scanned with a laboratory scanner at the intaglio and cameo surfaces, and the scanned files were exported in standard tessellation language (STL) file format. The master occlusal splint STL file, was used as a reference to compare with all scanned samples at the intaglio and cameo surfaces in a surface matching software program. Root mean square (RMS, measured in mm, absolute value) values were calculated by the software for accuracy comparisons. Group means were used as the representation of trueness, and the standard deviation for each group was calculated as a measure of precision. Color maps were recorded to visualize the areas of deviation between study samples and the master occlusal splint file. The data were normalized and transformed to rank scores, and one-way ANOVA was used to test for the differences between the groups. Pairwise comparisons were made between different groups. Fishers least square differences were used to account for the family-wise error rate. A 5% significance level was used for all the tests. RESULTS: The null hypotheses were rejected. The manufacturing technologies significantly affected the trueness of occlusal splints at both intaglio and cameo surfaces (p < 0.001). At the cameo surfaces, Group 1 - Milling (Wax) (0.03 ± 0.02 mm), Group 3 - Milling (M series) (0.04 ± 0.01 mm), and Group 4 - Milling (DWX-51/52D) (0.04 ± 0.01 mm) had the smallest mean RMS values and highest trueness. Group 3 had the smallest standard deviation and highest precision among all groups (p < 0.001, except p = 0.005 when compared with Group 2). Group 5 had the largest standard deviation and lowest precision among all groups (p < 0.001). At the intaglio surfaces, Group 1 - Milling (Wax) (0.06 ± 0.01 mm) had the smallest RMS values and highest trueness among all groups (p < 0.001), and Group 2 - Heat-polymerizing (0.20 ± 0.03 mm) and Group 5 - 3D-printing (Cares P30) (0.15 ± 0.05 mm) had significantly larger mean RMS and standard deviation values than all other groups (p < 0.001), with lowest trueness and precision. In the color maps, Group 2 - Heat-polymerizing and Group 5 - 3D-printing (Cares P30) showed the most discrepancies with yellow and red (positive discrepancies) in most areas, and Group 1 - Milling (Wax) showed the best and most uniform surface matching with the most area in green. CONCLUSION: The manufacturing technologies significantly affected the trueness and precision of occlusal splints at both intaglio and cameo surfaces. The 5-axis milling units and industrial-level CLIP 3D-printer could be considered to achieve surface accuracy of occlusal splints.


Subject(s)
Computer-Aided Design , Occlusal Splints , Printing, Three-Dimensional , Software
9.
J Prosthodont ; 32(6): 519-526, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35962924

ABSTRACT

PURPOSE: To evaluate the effects of 5 manufacturing technologies and 2 finish line designs on the trueness and dimensional stability of 3D-printed definitive dies at finish line regions under different storage conditions and time. MATERIAL AND METHODS: Preparation of light chamfer and round shoulder finish lines were adopted individually on two mandibular first molar typodont teeth and digitalized as standard tessellation language (STL) files. A total of 240 samples (192 AM definitive dies and 48 definitive conventional stone dies) in 20 groups (n = 12) were manufactured based on 2 finishing line designs (chamfer and shoulder), 5 manufacturing technologies (4 additively manufactured technologies and conventional stone die), and 2 storage conditions (light exposure and dark). The 4 additively manufactured (AM) technologies include a DLP 3D-printer, an economic LED 3D-printer, a CLIP 3D-printer, and an SLA 3D-printer. All the study samples were distributed into two storage conditions. Subsequently, samples were digitalized to STL files at 3 different time points (within 36 hours, 1-month, and 3-months). A surface matching software was used to superimpose the sample STL files onto the corresponding original STL files with the best-fit alignment function. The trueness of each printed and stone definitive dies and their dimensional stabilities were measured by the root mean square (RMS, in mm). A linear mixed-effects model was used to test the effects of the finish line design, manufacturing technology, storage condition, and storage time on RMS values (α = 0.05). RESULTS: While finish line designs had no significant effects [F(1, 220) = 0.85, p < 0.358], the manufacturing technologies [F(3, 220) = 33.02, p < 0.001], storage condition [F(1, 220) = 4.11, p = 0.044], and storage time F(2, 440) = 10.37, p < 0.001] affected the trueness and dimensional stability of 3D-printed dies at finish line regions. No significant interactions were found among the 4 factors. For the manufacturing technologies, Type IV stone groups and LCD 3D-printer groups had significantly higher RMS values than the other 3 printers (p < 0.001) with no significant differences between Type IV stone and LCD 3D-printer groups (p = 0.577). DLP 3D-printer groups had higher RMS values than both SLA 3D-printer groups and CLIP 3D-printer groups (p < 0.001). There were no significant differences between SLA 3D-printer groups and CLIP 3D-printer groups, p = 0.671. For the effects of storage conditions, RMS values were significantly higher in the groups stored with the direct light exposure than the ones stored in the dark, p = 0.044. In terms of the effects of storage time, the RMS values were significantly higher after 1-month storage, p = 0.002; and 3-month storage, p < 0.001, than the ones at the immediate postmanufacturing stage. However, the RMS values after 1-month and 3-month storage were not significantly different from each other (p = 0.169). CONCLUSIONS: Manufacturing technologies, storage conditions, and storage time significantly affected the trueness and dimensional stability of 3D-printed dies at finish line regions, while finish line designs had no significant effects. Among the AM technologies tested, all have produced either comparable or truer 3D-printed dies than the Type IV dental stone dies, and the CLIP and SLA 3D-printers produced the best outcomes. 3D-printed dies showed significant distortion after 1-month and 3-months storage, especially under light exposure storage conditions. These findings may negate the clinical need to preserve 3D-printed dies, and digital data should be preserved instead.


Subject(s)
Computer-Aided Design , Printing, Three-Dimensional , Technology , Software , Models, Dental
10.
J Prosthodont ; 32(S1): 61-67, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35929188

ABSTRACT

PURPOSE: To investigate the translucency parameters of traditional, milled, and 3D-printed denture base materials at 3 different thicknesses and the color masking ability of each material against a metallic background between different thicknesses. MATERIAL AND METHODS: A traditional heat-polymerizing polymethylmethacrylate (PMMA) (H-Lucitone) material was used as the control group. Two milled pre-polymerized resin blocks (M-Lucitone and IvoBase) and five 3D-printed denture base materials (P-Lucitone, Dentca LP, Dentca OP, Formlabs, and Kulzer) were used as experimental groups. A total of 240 samples, (n = 30, per material) were fabricated to a final specimen dimension of 12×12 mm and in thicknesses of 1.0, 2.0, and 3.0 mm (n = 10 per thickness/material) according to the manufacturers' recommendations. The color coordinates (L*, a*, b*) in CIELab color space for all specimens placed against a white, black, and metallic background were measured with a spectrophotometer. The translucency parameters (TP00 ) at each thickness and the color differences between 1 mm and 2 mm (dE00M1-2 ) and between 2 mm and 3 mm (dE00M2-3 ) against the metallic background were calculated with the CIEDE2000 color matrix. Comparisons between the groups for differences in TP00 were made using One-way ANOVA separately for each thickness. Comparisons of groups and materials for differences in dE00M1-2 and dE00M2-3 were made using Two-way ANOVA and Fisher's Protected Least Significant Differences (α = 0.05). RESULTS: The TP00 decreased with increasing thickness in all 8 material groups. All 3D-printed materials, except P-Lucitone, had higher TP00 than milled pre-polymerized resin materials (M-Lucitone and IvoBase), and traditional heat-polymerizing PMMA (H-Lucitone) material (P<.001) at all thicknesses. In the 1 mm and 2 mm thickness, heat-polymerizing acrylic resin (H-Lucitone) had the lowest TP00 , and in the 3 mm thickness, milled acrylic resin (M-Lucitone and IVOBase) had had lowest TP00 (p < 0.001). All material groups had significantly lower values of dE00M2-3 than dE00M1-2 (p < 0.001). The color differences dE00M2-3 were significantly lower in H-Lucitone, M-Lucitone, P-Lucitone, and IvoBase groups than in other materials, while the color difference of dE00M1-2 was significantly lower in H-Lucitone, P-Lucitone and Dentca LP than other materials (p < 0.001). CONCLUSIONS: The results from this study provide clinicians and dental technicians with information regarding the selection of denture base materials to achieve desired color masking outcomes, according to available prosthetic space. Thicker prostheses significantly improved the color masking abilities of denture acrylic resins against a metallic background. In a thickness of 1 and 2 mm, the heat-polymerizing acrylic resin had a lower translucency parameter and better color masking ability. When the prosthesis thickness reached 3 mm, the milled acrylic resin had a lower translucency parameter and better color masking ability. When compared to the heat-polymerizing resin and milled acrylic resin materials, except for one 3D-printing resin (P-Lucitone), the color masking abilities of the remaining 3D-printing resin materials were low, regardless of prosthesis thickness.


Subject(s)
Denture Bases , Polymethyl Methacrylate , Acrylic Resins , Computer-Aided Design , Printing, Three-Dimensional , Materials Testing , Surface Properties , Color
11.
J Prosthodont ; 32(7): 588-593, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35977883

ABSTRACT

PURPOSE: To investigate the trueness of intraoral scanning in 8 commonly seen partially edentulous conditions. MATERIALS AND METHODS: A maxillary dentoform was modified into the 8 commonly seen partially edentulous conditions. Each modification was scanned with a laboratory desktop scanner. Each modification was then scanned 10 times (n = 10) with an intraoral scanner. All scans were exported as STL files and then imported into a surface matching software using the best-fit alignment method. The dimensional differences between the study STL files from the intraoral scanner were compared to the corresponding reference STL files. The measurements were calculated as the root mean square (RMS) and defined as the trueness of the intraoral scans. In addition to the RMS values, qualitative assessments were completed on the color maps. The color maps produced by the surface matching software were used to visualize the areas of deviation between scans from the intraoral scanner and their corresponding reference files. One-way analysis of variance (ANOVA), followed by pair-wise comparisons using Fisher's Protected Least Significant Difference were utilized to compare the differences between the groups in RMS values (α = 0.05). RESULTS: Partially edentulous condition significantly affected the trueness of the intraoral scans. Group 8 (Class IV) had significantly lower RMS (0.1878 ± 0.0455 mm) than all other groups (p < 0.001). Group 2 (Class II) and Group 7 (Class III modification I) are not significantly different from each other (Group 2: 0.5758 ± 0.0300 mm; Group 7: 0.5602 ± 0.0231 mm, p = 0.571), while they both had significantly higher RMS than all other groups (p < 0.001). The remaining groups showed the RMS values were within the range of 0.3001 ± 0.0891 mm (Group 6 - Class III with Long Edentulous Span) and 0.4541 ± 0.1039 mm (Group 1 - Class I). CONCLUSION: Different partially edentulous conditions affected the trueness of the scans generated from the selected intraoral scanner. Class IV edentulous condition had the highest intraoral scan trueness. It is unknown if RMS values are clinically significant, and the validity of using intraoral scans directly for PRDP fabrication will need further studies.


Subject(s)
Dental Impression Technique , Mouth, Edentulous , Humans , Computer-Aided Design , Imaging, Three-Dimensional , Models, Dental , Mouth, Edentulous/diagnostic imaging
12.
Cell Death Dis ; 13(2): 123, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136023

ABSTRACT

Low testosterone level is an independent predictor of osteoporotic fracture in elderly men as well as increased fracture risk in men undergoing androgen deprivation. Androgens and androgen receptor (AR) actions are essential for bone development and homeostasis but their linkage to fracture repair remains unclear. Here we found that AR is highly expressed in the periosteum cells and is co-localized with a mesenchymal progenitor cell marker, paired-related homeobox protein 1 (Prrx1), during bone fracture repair. Mice lacking the AR gene in the periosteum expressing Prrx1-cre (AR-/Y;Prrx1::Cre) but not in the chondrocytes (AR-/Y;Col-2::Cre) exhibits reduced callus size and new bone volume. Gene expression data analysis revealed that the expression of several collagens, integrins and cell adhesion molecules were downregulated in periosteum-derived progenitor cells (PDCs) from AR-/Y;Prrx1::Cre mice. Mechanistically, androgens-AR signaling activates the AR/ARA55/FAK complex and induces the collagen-integrin α2ß1 gene expression that is required for promoting the AR-mediated PDCs migration. Using mouse cortical-defect and femoral graft transplantation models, we proved that elimination of AR in periosteum of host mice impairs fracture healing, regardless of AR existence of transplanted donor graft. While testosterone implanted scaffolds failed to complete callus bridging across the fracture gap in AR-/Y;Prrx1::Cre mice, cell-based transplantation using DPCs re-expressing AR could lead to rescue bone repair. In conclusion, targeting androgen/AR axis in the periosteum may provide a novel therapy approach to improve fracture healing.


Subject(s)
Fractures, Bone , Receptors, Androgen , Androgen Antagonists/pharmacology , Androgens/pharmacology , Animals , Fractures, Bone/therapy , Homeodomain Proteins/genetics , Humans , Male , Mice , Periosteum/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Testosterone
13.
J Prosthodont ; 31(3): 221-227, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34048118

ABSTRACT

PURPOSE: To compare the intaglio surface trueness of obturator prosthesis bases manufactured by traditional compression molding, injection molding, and 3D printing techniques. MATERIALS AND METHODS: A complete edentulous master cast with Aramany Class I maxillary defect was selected for this in vitro study. Four study groups (n = 10/group) were included in this study, Group A: Compression Molding, Group B: Injection Molding, and Group C: Cara Print 3D DLP Printer, and Group D: Carbon 3D DLS Printer. All obturator prostheses' intaglio surfaces were scanned with a laboratory scanner (E4; 3Shape Inc, New Providence, NJ) and the dimensional differences between study samples and their corresponding casts were calculated as the root mean square (measured in mm, absolute value) using a surface matching software (Geomagic design X; 3D Systems, Rock Hill, SC). One-way Analysis of variance (ANOVA) and Fisher's least significant difference (LSD) test were used to compare groups differences in RMS (α = 0.05). RESULTS: There was a significant effect of manufacturing technique on the RMS values for the 4 conditions [F(3,36) = 5.743, p = 0.003]. Injection Molding (0.070 mm) and Compression Molding groups (0.076 mm) had a lower interquartile range, and the Cara Print 3D-Printer group (0.427 mm) and Carbon 3D-Printer (0.149 mm) groups had a higher interquartile range. The Injection Molding group showed the best and uniform surface matching with the most area in green in the color maps. The Injection Molding group (0.139 ± 0.049 mm) had significantly lower RMS than all other groups (p < 0.001 for all comparisons). Compression Molding (0.269 ± 0.057 mm), Cara Print 3D-Printer (0.409 ± 0.270 mm), and Carbon 3D-Printer (0.291 ± 0.082 mm) groups were not significantly different from each other (Compression Molding versus Carbon 3D-Printer, p = 0.59; Compression Molding versus Cara Print 3D-Printer, p = 0.25; Cara Print 3D-Printer versus Carbon 3D-Printer, p = 0.40). CONCLUSION: Obturator prosthesis bases manufactured with injection molding technique showed better intaglio surface trueness than ones made by the compression molding technique and 3D printers. Although obturator prosthesis bases manufactured from different 3D printers showed similar trueness, a DLP 3D printer produced less consistent outcome than a DLS 3D printer.


Subject(s)
Computer-Aided Design , Dental Implants , Denture, Complete , Maxilla , Printing, Three-Dimensional
14.
Int J Oral Maxillofac Implants ; 36(3): 474-484, 2021.
Article in English | MEDLINE | ID: mdl-34115061

ABSTRACT

PURPOSE: To compare the amount of bone expansion, bone density change, and implant primary stability with an osseodensification technique to a conventional drilling protocol. MATERIALS AND METHODS: Twenty-four bovine rib segments (20 × 25 × 4 mm) with a 1-mm outer layer of cortical bone were randomly divided into two groups: an osseodensification group and a conventional drilling group. Each bone sample received one 4.1 × 10-mm implant. The density of the peri-implant bone before and after osteotomy was measured. After implant placement, primary stability was assessed. A laser surface scanner was used before and after implant placement to compare the dimension of crestal bone width and volumetric expansion. Histomorphometric analysis was performed to compare the bone-to-implant contact percentage (BIC%) of the two groups. RESULTS: The peripheral and apical bone mineral density around the implants was significantly increased, and a statistically significantly higher peripheral BIC% was found in the osseodensification group. A significant increase in volume and bone width after implant placement was found in both groups. However, there were no significant differences in volume and bone width change at all three locations and in implant stability between the osseodensification and conventional drilling protocols. CONCLUSION: Within the limitations of this study, the osseodensification protocol increased the bone mineral density and primary bone-to-implant contact. Also, this study suggests that implant placement by osseodensification or conventional drilling can increase ridge dimensions in narrow alveolar ridges.


Subject(s)
Dental Implants , Osseointegration , Alveolar Process/diagnostic imaging , Alveolar Process/surgery , Animals , Bone Density , Cattle , Dental Implantation, Endosseous , Osteotomy
15.
J Prosthet Dent ; 126(1): 102.e1-102.e7, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34024620

ABSTRACT

STATEMENT OF PROBLEM: Adequate bonding between pickup material and the newer generation of prepolymerized polymethyl methacrylate (PMMA) for computer-aided-design and computer-aided manufacturing (CAD-CAM) dentures is essential to the success of treatment. However, studies on the bond between these 2 materials are lacking. PURPOSE: The purpose of this in vitro study was to evaluate the bond strength of 3 different chairside implant LOCATOR attachment pickup material groups and prepolymerized PMMA by investigating their pushout force. MATERIAL AND METHODS: Prepolymerized PMMA, (Lucitone 199) was used as the denture base material. The material was cut into 25×25×5-mm disks, and a Ø6.5-mm hole was drilled into the center of the disks. Six pickup materials from 3 groups were tested: composite resin with bonding agent (N=3, EZ PickUp, Quick Up, and Triad gel), composite resin without bonding agent (N=1, Chairside), and acrylic resin (N=2, Jet denture repair acrylic, and Duralay). All materials were prepared as per the manufacturers' recommendations and were used to fill the center hole. The specimens were left for 48 hours to completely polymerize before testing. Half of the specimens from each material then received thermocycling treatment. All specimens were subjected to axial pushout testing with a universal testing machine. RESULTS: In the nonthermocycled specimens, Duralay and Jet denture repair acrylic resin showed significantly higher pushout force than that of the other groups (P<.001). Triad gel showed higher pushout force than EZ PickUp and Quick Up (P<.001). Chairside showed the lowest push-out force. The same trend was also observed in the thermocycled specimens. The peak pushout force of nonthermocycled Chairside composite resin was significantly lower than that of thermocycled Chairside composite resin (P=.03). Conversely, the peak pushout force of nonthermocycled EZ PickUp specimens was significantly higher than that of thermocycled EZ PickUp specimens (P=.01). Variation in fracture patterns among groups was observed, and the correlation between pushout force and fracture patterns was recorded. CONCLUSIONS: Two materials from the acrylic resin group, Jet denture repair acrylic and Duralay, showed higher pushout forces, indicating a better bond with Lucitone 199 CAD-CAM denture base material compared with other tested materials, including composite resin with bonding agent (EZ PickUp, Quick Up, and Triad gel) and composite resin without bonding agent (Chairside).


Subject(s)
Dental Bonding , Denture Bases , Computer-Aided Design , Dental Stress Analysis , Materials Testing , Polymethyl Methacrylate , Surface Properties
16.
Oral Health Prev Dent ; 16(6): 557-562, 2018.
Article in English | MEDLINE | ID: mdl-30574610

ABSTRACT

PURPOSE: To investigate the possible interaction between fluoride treatment time and concentration on enamel caries lesion de-/remineralisation. MATERIALS AND METHODS: The study design followed a three (fluoride concentration: 0, 275, 1250 ppm as sodium fluoride) x four (treatment time: 10, 30, 60, 120 s) factorial design. Caries lesions were created in bovine enamel and the extent of demineralisation determined using Vickers surface microhardness (VHN). Lesions were pH cycled (18 days) with the daily schedule consisting of two fluoride treatments, a 4-h demineralisation period and exposure to artificial saliva at all other times. VHN was determined again after pH cycling and changes to baseline values calculated (∆VHN). Enamel fluoride uptake (EFU) was determined using the microbiopsy technique. Data were analyzed using two-way ANOVA. RESULTS: The concentration x treatment time interaction was significant for ∆VHN (p < 0.0001) and EFU (p = 0.0298). Dose-response relationships were observed for both variables for fluoride concentration and treatment time. ∆VHN: higher fluoride concentration compensated for shorter treatment time (e.g. ∆VHN [mean ± SD] = 85.5 ± 60.6 for 30 s with 1250 ppm fluoride vs ∆VHN = 84.3 ± 26.9 for 120s with 275 ppm fluoride). EFU data were similar but highlighted a greater ability to discern between fluoride concentrations (e.g. EFU = 4364 ± 1166 ppm vs 8538 ± 9531 ppm; above examples). Although ∆VHN and EFU correlated well (r = 0.723; p < 0.001), lesion demonstrated a greater ability to acquire fluoride than to remineralise. CONCLUSIONS: Behavioural aspects relating to caries can be studied in vitro, although model limitations must be considered. Adequate exposure times to cariostatic concentrations of fluoride are important in maximising caries prevention.


Subject(s)
Cariostatic Agents/metabolism , Cariostatic Agents/pharmacology , Dental Caries/metabolism , Dental Enamel/drug effects , Dental Enamel/metabolism , Sodium Fluoride/metabolism , Sodium Fluoride/pharmacology , Tooth Demineralization/metabolism , Humans , In Vitro Techniques , Time Factors , Tooth Remineralization
17.
Plast Reconstr Surg Glob Open ; 6(5): e1773, 2018 May.
Article in English | MEDLINE | ID: mdl-29922558

ABSTRACT

BACKGROUND: Soft-tissue deficiencies pose a challenge in a variety of disease processes when the end result is exposure of underlying tissue. Although multiple surgical techniques exist, the transposition of tissue from one location to another can cause donor-site morbidity, long incisions prone to dehiscence, and poor patient outcomes as a result. Use of tissue expansion prior to grafting procedures has been shown to have success in increasing available soft tissue to aid in repairing wounds. However, the current tissue expanders have biomechanical limits to the extent and rate of expansion that usually exceeds the tissue capacity, leading to incisional dehiscence or expander extrusion. Understanding the baseline biomechanical properties of the tissue to be expanded would provide useful information regarding surgical protocol employed for a given anatomical location. Therefore, the aim of this study was to test and compare the baseline (preexpansion) biomechanical properties of different common expansion sites in dogs. METHODS: Four samples measuring approximately 20 × 15 × 1 mm were harvested from 8 dogs. The samples were collected from the hard palate, alveolar mucosa, scalp, and chest of the animal and analyzed for stress, strain, maximum tangential stiffness, maximum tangential modulus, and tensile strength using a Texture Technologies TA.XT texture analyzer with corresponding biomechanical measurement software. Samples were compared as to their baseline biomechanical properties prior to any soft-tissue expansion. Histological sections of the samples were analyzed using hematoxylin eosin in an attempt to correlate the histological description to the biomechanical properties seen during testing. Summary statistics (mean, standard deviation, standard error, range) are reported for stress, strain, maximum tangential stiffness, maximum tangential modulus, and tensile strength and for the histological parameters by intraoral site. Analysis of variance was used to compare the biomechanical and histological parameters among the 4 locations while accounting for multiple measurements from each dog. RESULTS: The scalp had significantly higher maximum stress (σmax) than chest, mucosa, and palate (P < 0.0001), with no differences among the other 3 locations (P > 0.63). Scalp site also had significantly higher maximum tangential modulus (ε) than chest, mucosa, and palate (P < 0.006), with no differences among the other 3 locations (P > 0.17). The locations did not have significantly different maximum tangential stiffness (k; P = 0.72). Histologically, 2 separate patterns of collagen disruption were evident. CONCLUSION: Although different results were obtained than theorized, this study showed that the scalp had the greatest resiliency to expand prior to tearing, and the highest tangential modulus, with all sites having statistically similar modulus of elasticity. Based on this study, the scalp could be expanded more aggressively compared with the other sites.

18.
Life Sci Space Res (Amst) ; 17: 44-50, 2018 May.
Article in English | MEDLINE | ID: mdl-29753413

ABSTRACT

This study was initiated as a component of a larger undertaking designed to study bone healing in microgravity aboard the International Space Station (ISS). Spaceflight experimentation introduces multiple challenges not seen in ground studies, especially with regard to physical space, limited resources, and inability to easily reproduce results. Together, these can lead to diminished statistical power and increased risk of failure. It is because of the limited space, and need for improved statistical power by increasing sample size over historical numbers, NASA studies involving mice require housing mice at densities higher than recommended in the Guide for the Care and Use of Laboratory Animals (National Research Council, 2011). All previous NASA missions in which mice were co-housed, involved female mice; however, in our spaceflight studies examining bone healing, male mice are required for optimal experimentation. Additionally, the logistics associated with spaceflight hardware and our study design necessitated variation of density and cohort make up during the experiment. This required the development of a new method to successfully co-house male mice while varying mouse density and hierarchical structure. For this experiment, male mice in an experimental housing schematic of variable density (Spaceflight Correlate) analogous to previously established NASA spaceflight studies was compared to a standard ground based housing schematic (Normal Density Controls) throughout the experimental timeline. We hypothesized that mice in the Spaceflight Correlate group would show no significant difference in activity, aggression, or stress when compared to Normal Density Controls. Activity and aggression were assessed using a novel activity scoring system (based on prior literature, validated in-house) and stress was assessed via body weights, organ weights, and veterinary assessment. No significant differences were detected between the Spaceflight Correlate group and the Normal Density Controls in activity, aggression, body weight, or organ weight, which was confirmed by veterinary assessments. Completion of this study allowed for clearance by NASA of our bone healing experiments aboard the ISS, and our experiment was successfully launched February 19, 2017 on SpaceX CRS-10.


Subject(s)
Housing, Animal/standards , Space Flight , Weightlessness , Animals , Body Weight , Male , Mice , Mice, Inbred C57BL , Organ Size
19.
Comp Med ; 68(2): 131-138, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29663938

ABSTRACT

Spaceflight results in bone loss like that associated with osteoporosis or decreased weight-bearing (for example, high-energy trauma such as explosive injuries and automobile accidents). Thus, the unique spaceflight laboratory on the International Space Station presents the opportunity to test bone healing agents during weightlessness. We are collaborating with NASA and the US Army to study bone healing in spaceflight. Given the unique constraints of spaceflight, study design optimization was required. Male mice were selected primarily because their femur is larger than females', allowing for more reproducible surgical outcomes. However, concern was raised regarding male mouse aggression. In addition, the original spaceflight study design included cohousing nonoperated control mice with mice that had undergone surgery to create a segmental bone defect. This strategy prompted the concern that nonoperated mice would exhibit aggressive behavior toward vulnerable operated mice. We hypothesized that operated and nonoperated male mice could be cohoused successfully when they were cagemates since birth and underwent identical anesthetic, analgesic, preoperative, and postoperative conditions. Using quantitative behavioral scoring, body weight, and organ weight analyses (Student t test and ANOVA), we found that nonoperated and operated C57BL/6 male mice could successfully be housed together. The male mice did not exhibit aggressive behavior toward cagemates, whether operated or nonoperated, and the mice did not show evidence of stress, as indicated by veterinary assessment, or change in body or proportional organ weights. These findings allowed our mission to proceed (launched February 2017) and may inform future surgical study designs, potentially increasing housing flexibility.


Subject(s)
Aggression , Behavior, Animal , Bone and Bones/surgery , Housing, Animal , Mice/physiology , Animals , Bone Regeneration , Male , Mice, Inbred C57BL , Space Flight , Weightlessness
20.
Life Sci Space Res (Amst) ; 16: 52-62, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29475520

ABSTRACT

Segmental bone defects (SBDs) secondary to trauma invariably result in a prolonged recovery with an extended period of limited weight bearing on the affected limb. Soldiers sustaining blast injuries and civilians sustaining high energy trauma typify such a clinical scenario. These patients frequently sustain composite injuries with SBDs in concert with extensive soft tissue damage. For soft tissue injury resolution and skeletal reconstruction a patient may experience limited weight bearing for upwards of 6 months. Many small animal investigations have evaluated interventions for SBDs. While providing foundational information regarding the treatment of bone defects, these models do not simulate limited weight bearing conditions after injury. For example, mice ambulate immediately following anesthetic recovery, and in most cases are normally ambulating within 1-3 days post-surgery. Thus, investigations that combine disuse with bone healing may better test novel bone healing strategies. To remove weight bearing, we have designed a SBD rodent healing study in microgravity (µG) on the International Space Station (ISS) for the Rodent Research-4 (RR-4) Mission, which launched February 19, 2017 on SpaceX CRS-10 (Commercial Resupply Services). In preparation for this mission, we conducted an end-to-end mission simulation consisting of surgical infliction of SBD followed by launch simulation and hindlimb unloading (HLU) studies. In brief, a 2 mm defect was created in the femur of 10 week-old C57BL6/J male mice (n = 9-10/group). Three days after surgery, 6 groups of mice were treated as follows: 1) Vivarium Control (maintained continuously in standard cages); 2) Launch Negative Control (placed in the same spaceflight-like hardware as the Launch Positive Control group but were not subjected to launch simulation conditions); 3) Launch Positive Control (placed in spaceflight-like hardware and also subjected to vibration followed by centrifugation); 4) Launch Positive Experimental (identical to Launch Positive Control group, but placed in qualified spaceflight hardware); 5) Hindlimb Unloaded (HLU, were subjected to HLU immediately after launch simulation tests to simulate unloading in spaceflight); and 6) HLU Control (single housed in identical HLU cages but not suspended). Mice were euthanized 28 days after launch simulation and bone healing was examined via micro-Computed Tomography (µCT). These studies demonstrated that the mice post-surgery can tolerate launch conditions. Additionally, forces and vibrations associated with launch did not impact bone healing (p = .3). However, HLU resulted in a 52.5% reduction in total callus volume compared to HLU Controls (p = .0003). Taken together, these findings suggest that mice having a femoral SBD surgery tolerated the vibration and hypergravity associated with launch, and that launch simulation itself did not impact bone healing, but that the prolonged lack of weight bearing associated with HLU did impair bone healing. Based on these findings, we proceeded with testing the efficacy of FDA approved and novel SBD therapies using the unique spaceflight environment as a novel unloading model on SpaceX CRS-10.


Subject(s)
Bone and Bones/physiopathology , Femur/physiopathology , Fracture Healing , Space Flight/instrumentation , Space Simulation , Animals , Biomechanical Phenomena , Bone and Bones/radiation effects , Femur/radiation effects , Fracture Healing/radiation effects , Hindlimb Suspension , Male , Mice , Mice, Inbred C57BL , Weightlessness , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...