Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Proc (Bayl Univ Med Cent) ; 37(4): 655-658, 2024.
Article in English | MEDLINE | ID: mdl-38910806

ABSTRACT

We describe the case of a 19-year-old woman who presented with abdominal pain, vomiting, and a palpable purpuric rash. The patient subsequently developed dysentery and was found to have an infection from Shiga toxin-producing Escherichia coli. The patient also met diagnostic criteria for IgA vasculitis (also known as Henoch Schönlein purpura) but had negative immunofluorescence biopsies of the rash. The patient was treated with steroids and achieved recovery. To our knowledge, this is the first documented case of IgA vasculitis in the setting of an enterohemorrhagic E. coli infection. This case highlights an atypical presentation of IgA vasculitis and the need to include small vessel vasculitis as a differential diagnosis when treating patients of all ages.

2.
Nat Protoc ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702386

ABSTRACT

Temporal development of neural electrophysiology follows genetic programming, similar to cellular maturation and organization during development. The emergent properties of this electrophysiological development, namely neural oscillations, can be used to characterize brain development. Recently, we utilized the innate programming encoded in the human genome to generate functionally mature cortical organoids. In brief, stem cells are suspended in culture via continuous shaking and naturally aggregate into embryoid bodies before being exposed to media formulations for neural induction, differentiation and maturation. The specific culture format, media composition and duration of exposure to these media distinguish organoid protocols and determine whether a protocol is guided or unguided toward specific neural fate. The 'semi-guided' protocol presented here has shorter induction and differentiation steps with less-specific patterning molecules than most guided protocols but maintains the use of neurotrophic factors such as brain-derived growth factor and neurotrophin-3, unlike unguided approaches. This approach yields the cell type diversity of unguided approaches while maintaining reproducibility for disease modeling. Importantly, we characterized the electrophysiology of these organoids and found that they recapitulate the maturation of neural oscillations observed in the developing human brain, a feature not shown with other approaches. This protocol represents the potential first steps toward bridging molecular and cellular biology to human cognition, and it has already been used to discover underlying features of human brain development, evolution and neurological conditions. Experienced cell culture technicians can expect the protocol to take 1 month, with extended maturation, electrophysiology recording, and adeno-associated virus transduction procedure options.

3.
bioRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38585805

ABSTRACT

Cellular senescence, characterized by expressing the cell cycle inhibitory protein p21/CDKN1A, is evident in driving age-related diseases. Senescent cells play a crucial role in the initiation and progression of tau-mediated pathology, suggesting that targeting cell senescence offers a therapeutic potential for treating tauopathy associated diseases. This study focuses on identifying non-invasive biomarkers and validating their responses to a well-characterized senolytic therapy combining dasatinib and quercetin (D+Q), in a widely used tauopathy mouse model, PS19. We employed human-translatable MRI measures, including water extraction with phase-contrast arterial spin tagging (WEPCAST) MRI, T2 relaxation under spin tagging (TRUST), and structural MRI, and longitudinally assessed brain physiology and regional volumes in PS19 mice. Our data reveal increased BBB permeability, decreased oxygen extraction fraction, and brain atrophy in 9-month-old PS19 mice compared to their littermate controls. (D+Q) treatment effectively preserves BBB integrity, rescues cerebral oxygen hypometabolism, attenuates brain atrophy, and alleviates tau hyperphosphorylation in PS19 mice. Mechanistically, D+Q treatment induces a shift of microglia from a disease-associated to a homeostatic state, reducing a senescence-like microglial phenotype marked by increased p21/CDKN1A. D+Q-treated PS19 mice exhibit enhanced cue-associated cognitive performance in the tracing fear conditioning test compared to the vehicle-treated littermates, implying improved cognitive function by D+Q treatment. Our results pave the way for application of senolytic treatment as well as these noninvasive MRI biomarkers in clinical trials in tauopathy associated neurological disorders.

4.
PLoS One ; 17(11): e0277937, 2022.
Article in English | MEDLINE | ID: mdl-36409750

ABSTRACT

The importance of human cell-based in vitro tools to drug development that are robust, accurate, and predictive cannot be understated. There has been significant effort in recent years to develop such platforms, with increased interest in 3D models that can recapitulate key aspects of biology that 2D models might not be able to deliver. We describe the development of a 3D human cell-based in vitro assay for the investigation of nephrotoxicity, using RPTEC-TERT1 cells. These RPTEC-TERT1 proximal tubule organoids 'tubuloids' demonstrate marked differences in physiologically relevant morphology compared to 2D monolayer cells, increased sensitivity to nephrotoxins observable via secreted protein, and with a higher degree of similarity to native human kidney tissue. Finally, tubuloids incubated with nephrotoxins demonstrate altered Na+/K+-ATPase signal intensity, a potential avenue for a high-throughput, translatable nephrotoxicity assay.


Subject(s)
Kidney Tubules, Proximal , Organoids , Humans , Cell Line , Kidney Tubules, Proximal/metabolism , Kidney Tubules , Kidney
5.
Angew Chem Int Ed Engl ; 61(3): e202114514, 2022 01 17.
Article in English | MEDLINE | ID: mdl-34820990

ABSTRACT

A strategy to control the diastereoselectivity of bond formation at a prochiral attached-ring bridgehead is reported. An unusual stereodivergent Michael reaction relies on basic vs. Lewis acidic conditions and non-covalent interactions to control re- vs. si- facial selectivity en route to fully substituted attached-rings. This divergency reflects differential engagement of one rotational isomer of the attached-ring system. The successful synthesis of an erythro subtarget diastereomer ultimately leads to a short formal synthesis of merrilactone A.


Subject(s)
Lactones/chemical synthesis , Sesquiterpenes/chemical synthesis , Cyclization , Lactones/chemistry , Molecular Structure , Sesquiterpenes/chemistry , Stereoisomerism
6.
Diabetologia ; 65(2): 387-401, 2022 02.
Article in English | MEDLINE | ID: mdl-34932134

ABSTRACT

AIMS/HYPOTHESIS: We aimed to characterise and quantify the expression of HLA class II (HLA-II) in human pancreatic tissue sections and to analyse its induction in human islets. METHODS: We immunostained human pancreatic tissue sections from non-diabetic (n = 5), autoantibody positive (Aab+; n = 5), and type 1 diabetic (n = 5) donors, obtained from the Network of Pancreatic Organ Donors (nPOD), with HLA-II, CD68 and insulin. Each tissue section was acquired with a widefield slide scanner and then analysed with QuPath software. In total, we analysed 7415 islets that contained 338,480 cells. Widefield microscopy was further complemented by high resolution imaging of 301 randomly selected islets, acquired using a Zeiss laser scanning confocal (LSM880) to confirm our findings. Selected beta cells were acquired in enhanced resolution using LSM880 with an Airyscan detector. Further, we cultured healthy isolated human islets and reaggregated human islet microtissues with varying concentrations of proinflammatory cytokines (IFN-γ, TNF-α and IL-1ß). After proinflammatory cytokine culture, islet function was measured by glucose-stimulated insulin secretion, and HLA-I and HLA-II expression was subsequently evaluated with immunostaining or RNA sequencing. RESULTS: Insulin-containing islets (ICIs) of donors with type 1 diabetes had a higher percentage of HLA-II positive area (24.31%) compared with type 1 diabetic insulin-deficient islets (IDIs, 0.67%), non-diabetic (3.80%), and Aab+ (2.31%) donors. In ICIs of type 1 diabetic donors, 45.89% of the total insulin signal co-localised with HLA-II, and 27.65% of the islet beta cells expressed both HLA-II and insulin, while in non-diabetic and Aab+ donors 0.96% and 0.59% of the islet beta cells, respectively, expressed both markers. In the beta cells of donors with type 1 diabetes, HLA-II was mostly present in the cell cytoplasm, co-localising with insulin. In the experiments with human isolated islets and reaggregated human islets, we observed changes in insulin secretion upon stimulation with proinflammatory cytokines, as well as higher expression of HLA-II and HLA-I when compared with controls cultured with media, and an upregulation of HLA-I and HLA-II RNA transcripts. CONCLUSIONS/INTERPRETATION: After a long-standing controversy, we provide definitive evidence that HLA-II can be expressed by pancreatic beta cells from patients with type 1 diabetes. Furthermore, this upregulation can be induced in vitro in healthy isolated human islets or reaggregated human islets by treatment with proinflammatory cytokines. Our findings support a role for HLA-II in type 1 diabetes pathogenesis since HLA-II expressing beta cells can potentially become a direct target of autoreactive CD4+ lymphocytes.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Histocompatibility Antigens Class II/metabolism , Insulin-Secreting Cells/metabolism , Adolescent , Adult , Autoantibodies/blood , Cells, Cultured , Child , Female , Glucose/pharmacology , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/drug effects , Male , Tissue Donors , Up-Regulation , Young Adult
7.
J Autoimmun ; 123: 102708, 2021 09.
Article in English | MEDLINE | ID: mdl-34358764

ABSTRACT

PURPOSE: IL-17 is an important effector cytokine driving immune-mediated destruction in autoimmune diseases such as psoriasis. Blockade of the IL-17 pathway after the initiation of insulitis was effective in delaying or preventing the onset of type 1 diabetes (T1D) in rodent models. Expression of IL-17 transcripts in islets from a donor with recent-onset T1D has been reported, however, studies regarding IL-17 protein expression are lacking. We aimed to study whether IL-17 is being expressed in the islets of diabetic donors. METHODS: We stained human pancreatic tissues from non-diabetic (n = 5), auto-antibody positive (aab+) (n = 5), T1D (n = 6) and T2D (n = 5) donors for IL-17, Insulin, and Glucagon, and for CD45 in selected cases. High resolution images were acquired with Zeiss laser scanning confocal microscope LSM780 and analyzed with Zen blue 2.3 software. Cases stained for CD45 were also acquired with widefield slide scanner and analyzed with QuPath software. RESULTS: We observed a clear cytoplasmic staining for IL-17 in insulin-containing islets of donors with T1D and T2D, accounting for an average of 7.8 ± 8.4% and 14.9 ± 16.8% of total islet area, respectively. Both beta and alpha cells were sources of IL-17, but CD45+ cells were not a major source of IL-17 in those donors. Expression of IL-17 was reduced in islets of non-diabetic donors, aab+ donors and in insulin-deficient islets of donors with T1D. CONCLUSION: Our finding that IL-17 is expressed in islets of donors with T1D or T2D is quite intriguing and warrants further mechanistic studies in human islets to understand the role of IL-17 in the context of metabolic and immune stress in beta cells.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 2/immunology , Glucagon-Secreting Cells/immunology , Insulin-Secreting Cells/immunology , Interleukin-17/analysis , Tissue Donors , Adolescent , Adult , Child, Preschool , Female , Humans , Male , Young Adult
8.
J Pathol ; 255(4): 387-398, 2021 12.
Article in English | MEDLINE | ID: mdl-34396532

ABSTRACT

Adenomyosis and peritoneal endometriosis are common gynecologic lesions; they are characterized by aberrant locations of normal-appearing endometrium in myometrium and peritoneal surface, respectively. Both ectopic lesions are speculated to originate from uterine eutopic endometrium, which is composed of epithelium and stroma, but how these two different tissue types co-evolve in ectopic locations remains unclear. Here, we analyzed exome-wide mutations and global methylation in microdissected epithelium and stroma separately in paired adenomyosis, peritoneal endometriosis, and endometrium to investigate their relationship. Analyses of somatic mutations and their allele frequencies indicate monoclonal development not only in epithelium but also in the stroma of adenomyosis and peritoneal endometriosis. Our preliminary phylogenetic study suggests a plausible clonal derivation in epithelium and stroma of both ectopic and eutopic endometrium from the same founder epithelium-stroma progenitor cells. While a patient-specific methylation landscape is evident, adenomyosis epithelium and stroma can be distinguished from normal-appearing eutopic endometrium epigenetically. In summary, endometrial stroma, like its epithelial counterpart, could be clonal and both ectopic and eutopic endometrium following divergent evolutionary trajectories. Our data also warrant future investigations into the role of endometrial stroma in the pathobiology of endometrium-related disorders. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Adenomyosis/genetics , DNA Methylation , Endometriosis/genetics , Mutation , Adenomyosis/pathology , Adult , DNA Mutational Analysis , Endometriosis/pathology , Female , Humans , Middle Aged , Phylogeny , Retrospective Studies
10.
J Am Chem Soc ; 143(4): 2138-2155, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33464048

ABSTRACT

The isomalabaricanes comprise a large family of marine triterpenoids with fascinating structures that have been shown to be selective and potent apoptosis inducers in certain cancer cell lines. In this article, we describe the successful total syntheses of the isomalabaricanes stelletin A, stelletin E, and rhabdastrellic acid A, as well as the development of a general strategy to access other natural products within this unique family. High-throughput experimentation and computational chemistry methods were used in this endeavor. A preliminary structure-activity relationship study of stelletin A revealed the trans-syn-trans core motif of the isomalabaricanes to be critical for their cytotoxic activity.


Subject(s)
Apoptosis/drug effects , Computational Chemistry , Triterpenes/pharmacology , High-Throughput Screening Assays , Structure-Activity Relationship , Triterpenes/chemistry
12.
Mol Cell Biol ; 40(10)2020 04 28.
Article in English | MEDLINE | ID: mdl-32123009

ABSTRACT

The metabolic state of the brain can greatly impact neurologic function. Evidence of this includes the therapeutic benefit of a ketogenic diet in neurologic diseases, including epilepsy. However, brain lipid bioenergetics remain largely uncharacterized. The existence, capacity, and relevance of mitochondrial fatty acid ß-oxidation (FAO) in the brain are highly controversial, with few genetic tools available to evaluate the question. We have provided evidence for the capacity of brain FAO using a pan-brain-specific conditional knockout (KO) mouse incapable of FAO due to the loss of carnitine palmitoyltransferase 2, the product of an obligate gene for FAO (CPT2B-/-). Loss of central nervous system (CNS) FAO did not result in gross neuroanatomical changes or systemic differences in metabolism. Loss of CPT2 in the brain did not result in robustly impaired behavior. We demonstrate by unbiased and targeted metabolomics that the mammalian brain oxidizes a substantial quantity of long-chain fatty acids in vitro and in vivo Loss of CNS FAO results in robust accumulation of long-chain acylcarnitines in the brain, suggesting that the mammalian brain mobilizes fatty acids for their oxidation, irrespective of diet or metabolic state. Together, these data demonstrate that the mammalian brain oxidizes fatty acids under normal circumstances with little influence from or on peripheral tissues.


Subject(s)
Brain/metabolism , Fatty Acids/metabolism , Animals , Carnitine O-Palmitoyltransferase/genetics , Energy Metabolism , Female , Gene Deletion , Humans , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Oxidation-Reduction
13.
Clin Immunol ; 211: 108320, 2020 02.
Article in English | MEDLINE | ID: mdl-31809899

ABSTRACT

IL-6 is a pro-inflammatory cytokine upregulated in some autoimmune diseases. The role of IL-6 in the development of type 1 diabetes (T1D) is unclear. Clinical studies are investigating whether tocilizumab (anti-IL-6 receptor) can help preserve beta cell function in patients recently diagnosed with T1D. However, in some rodent models and isolated human islets, IL-6 has been found to have a protective role for beta cells by reducing oxidative stress. Hence, we systematically investigated local tissue expression of IL-6 in human pancreas from non-diabetic, auto-antibody positive donors and donors with T1D and T2D. IL-6 was constitutively expressed by beta and alpha cells regardless of the disease state. However, expression of IL-6 was highly reduced in insulin-deficient islets of donors with T1D, and the expression was then mostly restricted to alpha cells. Our findings suggest that the implication of IL-6 in T1D pathogenesis might be more complex than previously assumed.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Glucagon-Secreting Cells/immunology , Insulin-Secreting Cells/immunology , Interleukin-6/immunology , Adolescent , Adult , Aged , Diabetes Mellitus, Type 2/immunology , Female , Humans , Male , Middle Aged , Young Adult
14.
Nat Commun ; 10(1): 4148, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31515477

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations in either PKD1 or PKD2 genes, is one of the most common human monogenetic disorders and the leading genetic cause of end-stage renal disease. Unfortunately, treatment options for ADPKD are limited. Here we report the discovery and characterization of RGLS4326, a first-in-class, short oligonucleotide inhibitor of microRNA-17 (miR-17), as a potential treatment for ADPKD. RGLS4326 is discovered by screening a chemically diverse and rationally designed library of anti-miR-17 oligonucleotides for optimal pharmaceutical properties. RGLS4326 preferentially distributes to kidney and collecting duct-derived cysts, displaces miR-17 from translationally active polysomes, and de-represses multiple miR-17 mRNA targets including Pkd1 and Pkd2. Importantly, RGLS4326 demonstrates a favorable preclinical safety profile and attenuates cyst growth in human in vitro ADPKD models and multiple PKD mouse models after subcutaneous administration. The preclinical characteristics of RGLS4326 support its clinical development as a disease-modifying treatment for ADPKD.


Subject(s)
MicroRNAs/antagonists & inhibitors , Oligonucleotides/therapeutic use , Polycystic Kidney Diseases/drug therapy , Polycystic Kidney Diseases/genetics , Animals , Base Sequence , Cell Proliferation/drug effects , Disease Models, Animal , Gene Regulatory Networks/drug effects , HeLa Cells , Hematopoiesis/drug effects , Humans , Kidney Tubules/pathology , Macaca fascicularis , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Oligonucleotides/pharmacokinetics , Oligonucleotides/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tissue Distribution/drug effects
15.
J Neurosci Res ; 97(12): 1590-1605, 2019 12.
Article in English | MEDLINE | ID: mdl-31282030

ABSTRACT

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by an expanded CAG repeat within the huntingtin (HTT) gene. The Q140 and HdhQ150 knock-in HD mouse models were generated such that HdhQ150 mice have an expanded CAG repeat inserted into the mouse Htt gene, whereas in the Q140s, mouse exon 1 Htt was replaced with a mutated version of human exon 1. By standardizing mouse strain background, breeding to homozygosity and employing sensitive behavioral tests, we demonstrate that the onset of behavioral phenotypes occurs earlier in the Q140 than the HdhQ150 knock-in mouse models and that huntingtin (HTT) aggregation appears earlier in the striata of Q140 mice. We have previously found that the incomplete splicing of mutant HTT from exon 1 to exon 2 results in the production of a small polyadenylated transcript that encodes the highly pathogenic mutant HTT exon 1 protein. In this report, we have identified a functional consequence of the sequence differences between these two models at the RNA level, in that the level of incomplete splicing, and of the mutant exon 1 HTT protein, are greater in the brains of Q140 mice. While differences in the human and mouse exon 1 HTT proteins (e.g., proline rich sequences) could also contribute to the phenotypic differences, our data indicate that the incomplete splicing of HTT and approaches to lower the levels of the exon 1 HTT transcript should be pursued as therapeutic targets.


Subject(s)
Behavior, Animal/physiology , Disease Models, Animal , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/psychology , Animals , Brain/metabolism , Brain/pathology , Female , Gene Knock-In Techniques , Huntingtin Protein/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Phenotype
16.
BJU Int ; 124(5): 828-835, 2019 11.
Article in English | MEDLINE | ID: mdl-31265207

ABSTRACT

OBJECTIVES: To evaluate the effects of surgeon experience, body habitus, and bony pelvic dimensions on surgeon performance and patient outcomes after robot-assisted radical prostatectomy (RARP). PATIENTS, SUBJECTS AND METHODS: The pelvic dimensions of 78 RARP patients were measured on preoperative magnetic resonance imaging and computed tomography by three radiologists. Surgeon automated performance metrics (APMs [instrument motion tracking and system events data, i.e., camera movement, third-arm swap, energy use]) were obtained by a systems data recorder (Intuitive Surgical, Sunnyvale, CA, USA) during RARP. Two analyses were performed: Analysis 1, examined effects of patient characteristics, pelvic dimensions and prior surgeon RARP caseload on APMs using linear regression; Analysis 2, the effects of patient body habitus, bony pelvic measurement, and surgeon experience on short- and long-term outcomes were analysed by multivariable regression. RESULTS: Analysis 1 showed that while surgeon experience affected the greatest number of APMs (P < 0.044), the patient's body mass index, bony pelvic dimensions, and prostate size also affected APMs during each surgical step (P < 0.043, P < 0.046, P < 0.034, respectively). Analysis 2 showed that RARP duration was significantly affected by pelvic depth (ß = 13.7, P = 0.039) and prostate volume (ß = 0.5, P = 0.024). A wider and shallower pelvis was less likely to result in a positive margin (odds ratio 0.25, 95% confidence interval [CI] 0.09-0.72). On multivariate analysis, urinary continence recovery was associated with surgeon's prior RARP experience (hazard ratio [HR] 2.38, 95% CI 1.18-4.81; P = 0.015), but not on pelvic dimensions (HR 1.44, 95% CI 0.95-2.17). CONCLUSION: Limited surgical workspace, due to a narrower and deeper pelvis, does affect surgeon performance and patient outcomes, most notably in longer surgery time and an increased positive margin rate.


Subject(s)
Prostatectomy , Prostatic Neoplasms/surgery , Robotic Surgical Procedures , Surgeons/statistics & numerical data , Aged , Humans , Male , Middle Aged , Pelvis/diagnostic imaging , Pelvis/surgery , Postoperative Complications , Prospective Studies , Prostate/diagnostic imaging , Prostate/surgery , Prostatectomy/adverse effects , Prostatectomy/methods , Prostatectomy/statistics & numerical data , Prostatic Neoplasms/diagnostic imaging , Robotic Surgical Procedures/adverse effects , Robotic Surgical Procedures/methods , Robotic Surgical Procedures/statistics & numerical data , Treatment Outcome , Urinary Incontinence
18.
J Pathol ; 248(1): 41-50, 2019 05.
Article in English | MEDLINE | ID: mdl-30560554

ABSTRACT

The clonal relationship between ovarian high-grade serous carcinoma (HGSC) and its presumed precursor lesion, serous tubal intraepithelial carcinoma (STIC), has been reported. However, when analyzing patients with concurrent ovarian carcinoma and tubal lesion, the extensive carcinoma tissues present at diagnosis may have effaced the natural habitat of precursor clone(s), obscuring tumor clonal evolutionary history, or may have disseminated to anatomically adjacent fimbriae ends, masquerading as precursor lesions. To circumvent these limitations, we analyzed the genomic landscape of incidental tubal precursor lesions including p53 signature, dormant STIC or serous tubal intraepithelial lesion (STIL) and proliferative STIC in women without ovarian carcinoma or any cancer diagnosis using whole-exome sequencing and amplicon sequencing. In three of the four cancer-free women with multiple discrete tubal lesions we observed non-identical TP53 mutations between precursor lesions from the same individual. In one of the four women with co-existing ovarian HGSC and tubal precursor lesion we found non-identical TP53 mutations and a lack of common mutations shared between her precursor lesion and carcinoma. Analyzing the evolutionary history of multiple tubal lesions in the same four patients with concurrent ovarian carcinoma indicated distinct evolution trajectories. Collectively, the results support diverse clonal origins of tubal precursor lesions at the very early stages of tumorigenesis. Mathematical modeling based on lesion-specific proliferation rates indicated that p53 signature and dormant STIC may take a prolonged time (two decades or more) to develop into STIC, whereas STIC may progress to carcinoma in a much shorter time (6 years). The above findings may have implications for future research aimed at prevention and early detection of ovarian cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Evolution, Molecular , Fallopian Tube Neoplasms/genetics , Ovarian Neoplasms/genetics , Precancerous Conditions/genetics , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinoma in Situ/genetics , Carcinoma in Situ/pathology , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Cell Proliferation/genetics , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , DNA Mutational Analysis/methods , DNA, Neoplasm/genetics , Disease Progression , Fallopian Tube Neoplasms/pathology , Female , Genomics , Humans , Loss of Heterozygosity , Mutation , Ovarian Neoplasms/pathology , Phylogeny , Precancerous Conditions/pathology , Tumor Suppressor Protein p53/genetics , Exome Sequencing/methods
19.
Platelets ; 30(1): 126-135, 2019.
Article in English | MEDLINE | ID: mdl-30560697

ABSTRACT

Human platelets express two protease-activated receptors (PARs), PAR1 (F2R) and PAR4 (F2RL3), which are activated by a number of serine proteases that are generated during pathological events and cause platelet activation. Recent interest has focused on PAR4 as a therapeutic target, given PAR4 seems to promote experimental thrombosis and procoagulant microparticle formation, without a broadly apparent role in hemostasis. However, it is not yet known whether PAR4 activity plays a role in platelet-leukocyte interactions, which are thought to contribute to both thrombosis and acute or chronic thrombo-inflammatory processes. We sought to determine whether PAR4 activity contributes to granule secretion from activated platelets and platelet-leukocyte interactions. We performed in vitro and ex vivo studies of platelet granule release and platelet-leukocyte interactions in the presence of PAR4 agonists including PAR4 activating peptide, thrombin, cathepsin G, and plasmin in combination with small-molecule PAR4 antagonists. Activation of human platelets with thrombin, cathepsin G, or plasmin potentiated platelet dense granule secretion that was specifically impaired by PAR4 inhibitors. Platelet-leukocyte interactions and platelet P-selectin exposure the following stimulation with PAR4 agonists were also impaired by activated PAR4 inhibition in either a purified system or in whole blood. These results indicate PAR4-specific promotion of platelet granule release and platelet-leukocyte aggregate formation and suggest that pharmacological control of PAR4 activity could potentially attenuate platelet granule release or platelet-leukocyte interaction-mediated pathological processes.


Subject(s)
Blood Platelets/metabolism , Cell Communication , Cytoplasmic Granules/metabolism , Leukocytes/metabolism , Receptors, Thrombin/metabolism , Animals , Biomarkers , Flow Cytometry , Humans , Male , Papio , Platelet Activation , Platelet Aggregation
SELECTION OF CITATIONS
SEARCH DETAIL
...