Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Insect Sci ; 30(5): 1493-1506, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36458978

ABSTRACT

Olfaction plays a crucial role for arthropods in foraging, mating, and oviposition. The odorant-binding protein (OBP) gene is considered one of the most important olfactory genes. However, little is known about its functions in predatory mites. Here, we used Neoseiulus barkeri, an important commercialized natural pest control, to explore the chemosensory characteristics of OBP. In this study, N. barkeri was attracted by methyl salicylate (MeSA) and showed higher crawling speeds under MeSA treatment. Then, we identified and cloned an OBP gene named Nbarobp2 and analyzed its expression profiles in the predatory mite. Nbarobp2 was 663 bp, was highly expressed in larval and nymphal stages, and was significantly upregulated in N. barkeri under MeSA treatment. Nbarobp2 encoded 202 amino acid residues with a molecular weight of 23 kDa (after removing the signal peptide). Sequence comparisons revealed that the OBPs in Arachnida shared 6 conserved cysteine sites, but were distinguishable from the OBPs of Insecta on the phylogenetic tree. RNA interference, Western blotting, and binding affinity assays further proved that Nbarobp2 was involved in volatile perception in predatory mites. This study shed light on the functional characteristics of OBPs in predatory mites, providing a new insight for better biological control.

2.
Pest Manag Sci ; 77(2): 939-948, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32979024

ABSTRACT

BACKGROUND: In fluctuating climatic environments, heat acclimation in predatory mites is a superior adaptation strategy for effective agricultural pest management and can be used to enhance the abilities critical in biological control efficiency. We investigated the regulatory mechanism governing the remarkable plastic response of thermotolerance in a high-temperature adapted strain (HTAS) and discerned the differences in the defensive reactions between the HTAS and the conventional strain (CS) in the predatory mite Neoseiulus barkeri. RESULTS: At 42 °C, the relative expression levels of four identified HSP70 genes increased rapidly in both N. barkeri strains; meanwhile the expression of NbHSP70-1 and NbHSP70-2 in CS sharply decreased after 4 h, displaying a distinct contrast with the remaining elevated expression in HTAS. Western blot analysis showed that the protein level of NbHSP70-1 in CS was dramatically elevated at 0.5 h and decreased at 6 h at 42 °C. Conversely, in HTAS, NbHSP70-1 was constantly induced and peaked at 6 h at 42 °C. Furthermore, HSP70 suppression by RNAi knockdown had a greater influence on the survival of HTAS, causing a higher mortality under high temperature than CS. Finally, the recombinant exogenous NbHSP70-1 protein enhanced the viability of E. coli BL21 under a lethal temperature of 50 °C. CONCLUSION: Sustained accumulation of HSP70 proteins results in predatory phytoseiid mites with the thermotolerance advantage that could promote their biological control function to pests. The divergent constitutive regulation of HSP70 to a thermal environment is conducive to the flexible adaptability of predators in the higher trophic level to trade off under extremely adversity stress.


Subject(s)
Mites , Animals , Escherichia coli , HSP70 Heat-Shock Proteins/genetics , Hot Temperature , Temperature , Thermotolerance
SELECTION OF CITATIONS
SEARCH DETAIL
...