Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 380
Filter
1.
J Am Chem Soc ; 146(23): 15815-15824, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38832857

ABSTRACT

Ribonuclease targeting chimera (RIBOTAC) represents an emerging strategy for targeted therapy. However, RIBOTAC that is selectively activated by bio-orthogonal or cell-specific triggers has not been explored. We developed a strategy of inducible RIBOTAC (iRIBOTAC) that enables on-demand degradation of G-quadruplex (G4) RNAs for precision cancer therapy. iRIBOTAC is designed by coupling an RNA G4 binder with a caged ribonuclease recruiter, which can be decaged by a bio-orthogonal reaction, tumor-specific enzyme, or metabolite. A bivalent G4 binder is engineered by conjugating a near-infrared (NIR) fluorescence G4 ligand to a noncompetitive G4 ligand, conferring fluorescence activation on binding G4s with synergistically enhanced affinity. iRIBOTAC is demonstrated to greatly knockdown G4 RNAs upon activation under bio-orthogonal or cell-specific stimulus, with dysregulation of gene expressions involving cell killing, channel regulator activity, and metabolism as revealed by RNA sequencing. This strategy also shows a crucial effect on cell fate with remarkable biochemical hallmarks of apoptosis. Mice model studies demonstrate that iRIBOTAC allows selective imaging and growth suppression of tumors with bio-orthogonal and tumor-specific controls, highlighting G4 RNA targeting and inducible silencing as a valuable RIBOTAC paradigm for cancer therapy.


Subject(s)
G-Quadruplexes , RNA, Messenger , Ribonucleases , Humans , Animals , Mice , Ribonucleases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Silencing , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/genetics
2.
Nat Commun ; 15(1): 4363, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778087

ABSTRACT

Drug screening based on in-vitro primary tumor cell culture has demonstrated potential in personalized cancer diagnosis. However, the limited number of tumor cells, especially from patients with early stage cancer, has hindered the widespread application of this technique. Hence, we developed a digital microfluidic system for drug screening using primary tumor cells and established a working protocol for precision medicine. Smart control logic was developed to increase the throughput of the system and decrease its footprint to parallelly screen three drugs on a 4 × 4 cm2 chip in a device measuring 23 × 16 × 3.5 cm3. We validated this method in an MDA-MB-231 breast cancer xenograft mouse model and liver cancer specimens from patients, demonstrating tumor suppression in mice/patients treated with drugs that were screened to be effective on individual primary tumor cells. Mice treated with drugs screened on-chip as ineffective exhibited similar results to those in the control groups. The effective drug identified through on-chip screening demonstrated consistency with the absence of mutations in their related genes determined via exome sequencing of individual tumors, further validating this protocol. Therefore, this technique and system may promote advances in precision medicine for cancer treatment and, eventually, for any disease.


Subject(s)
Breast Neoplasms , Microfluidics , Precision Medicine , Xenograft Model Antitumor Assays , Precision Medicine/methods , Humans , Animals , Mice , Female , Cell Line, Tumor , Microfluidics/methods , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Drug Screening Assays, Antitumor/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods
3.
Support Care Cancer ; 32(5): 286, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613655

ABSTRACT

AIM: This study aimed to explore the characteristics of stigma in postoperative oral cancer patients to provide a reference for the formulation of targeted intervention measures. METHODS: A qualitative study was conducted on 25 postoperative oral cancer patients in a tertiary A hospital in Hunan, China, from March to July 2021. Semi-structured face-to-face interviews focused on experiences of stigma were performed. The interview data was analyzed using the NVivo V.12 software based on the reflexive intuitive thematic analysis method. The paper complies with the COREQ. RESULTS: The stigma experience of postoperative oral cancer patients can be divided into 3 themes: (1) triggers (impaired appearance and oral function and psycho-social pressure); (2) forms (overall isolation, unpleasant feeling of inferiority, and unpleasant social discrimination); (3) coping strategies (positive psychological adjustment, seeking social support and coming out of the unpleasant shadows). CONCLUSION: Postoperative oral cancer patients clearly articulated that stigma was present in their lives and they experienced multiple forms of stigma. Further work is needed to increase education and awareness about oral cancer to guide them to take positive coping and reduce stigma.


Subject(s)
Mouth Neoplasms , Humans , Mouth Neoplasms/surgery , Social Stigma , Qualitative Research , China , Coping Skills
4.
J Colloid Interface Sci ; 667: 1-11, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38615618

ABSTRACT

A major challenge in combining cancer immunotherapy is the efficient delivery of multiple types of immunological stimulators to elicit a robust anti-tumor immune response and reprogram the immunosuppressive tumor microenvironment (TME). Here, we developed a DNA nanodevice that was generated by precisely assembling three types of immunological stimulators. The doxorubicin (Dox) component induced immunogenic cell death (ICD) in tumor cells and enhanced phagocytosis of antigen-presenting cells (APCs). Exogenous double-stranded DNA (dsDNA) could act as a molecular adjuvant to activate the stimulator of interferon genes (STING) signaling in APCs by engulfing dying tumor cells. Interleukin (IL)-12 and small hairpin programmed cell death-ligand 1 (shPD-L1) transcription templates were designed to regulate TME. Additionally, for targeted drug delivery, multiple cyclo[Arg-Gly-Asp-(d-Phe)-Cys] (cRGD) peptide units on DNA origami were employed. The incorporation of disulfide bonds allowed the release of multiple modules in response to intracellular glutathione (GSH) in tumors. The nanodevice promoted the infiltration of CD8+ and CD4+ cells into the tumor and generated a highly inflamed TME, thereby enhancing the effectiveness of cancer immunotherapy. Our research results indicate that the nanodevice we constructed can effectively inhibit tumor growth and prevent lung metastasis without obvious systemic toxicity, providing a promising strategy for cancer combination treatment.


Subject(s)
DNA , Doxorubicin , Immunotherapy , DNA/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Mice , Animals , Tumor Microenvironment/drug effects , Humans , Drug Delivery Systems , Mice, Inbred C57BL , Mice, Inbred BALB C , Cell Line, Tumor , Antigen-Presenting Cells/immunology , Nanoparticles/chemistry , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/immunology , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Particle Size
5.
Adv Sci (Weinh) ; 11(21): e2400888, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38638003

ABSTRACT

Circulating tumor cells (CTCs) shed from primary tumors must overcome the cytotoxicity of immune cells, particularly natural killer (NK) cells, to cause metastasis. The tumor microenvironment (TME) protects tumor cells from the cytotoxicity of immune cells, which is partially executed by cancer-associated mesenchymal stromal cells (MSCs). However, the mechanisms by which MSCs influence the NK resistance of CTCs remain poorly understood. This study demonstrates that MSCs enhance the NK resistance of cancer cells in a gap junction-dependent manner, thereby promoting the survival and metastatic seeding of CTCs in immunocompromised mice. Tumor cells crosstalk with MSCs through an intercellular cGAS-cGAMP-STING signaling loop, leading to increased production of interferon-ß (IFNß) by MSCs. IFNß reversely enhances the type I IFN (IFN-I) signaling in tumor cells and hence the expression of human leukocyte antigen class I (HLA-I) on the cell surface, protecting the tumor cells from NK cytotoxicity. Disruption of this loop reverses NK sensitivity in tumor cells and decreases tumor metastasis. Moreover, there are positive correlations between IFN-I signaling, HLA-I expression, and NK tolerance in human tumor samples. Thus, the NK-resistant signaling loop between tumor cells and MSCs may serve as a novel therapeutic target.


Subject(s)
Interferon-beta , Killer Cells, Natural , Mesenchymal Stem Cells , Neoplastic Cells, Circulating , Nucleotidyltransferases , Signal Transduction , Tumor Microenvironment , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Animals , Killer Cells, Natural/immunology , Mice , Interferon-beta/metabolism , Interferon-beta/immunology , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Humans , Neoplastic Cells, Circulating/immunology , Neoplastic Cells, Circulating/metabolism , Tumor Microenvironment/immunology , Membrane Proteins/metabolism , Disease Models, Animal , Cell Line, Tumor
7.
Biol Trace Elem Res ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38514508

ABSTRACT

Despite the robust correlation between metabolic disorders and heavy metals, there has been limited research on the associations between nickel levels and non-alcoholic fatty liver disease (NAFLD) as well as liver fibrosis. This study aimed to examine the associations among urinary nickel, NAFLD, and liver fibrosis. The data utilized in this study were obtained from the National Health and Nutrition Examination Survey 2017-2020. A comprehensive screening process was conducted, resulting in the inclusion of a total of 3169 American adults in the analysis. The measurement of urinary nickel was conducted through inductively coupled-plasma mass spectrometry. Vibration-controlled transient elastography was employed to assess the controlled attenuation parameter and liver stiffness measurement as indicators for NAFLD and liver fibrosis, respectively. Multivariable logistic regression models were employed to evaluate the associations among urinary nickel, NAFLD, and liver fibrosis. Restricted cubic splines were employed to explored the nonlinear associations. After adjusting for all covariates, the correlation between the highest quartile of urinary nickel and NAFLD was found to be significant (OR = 1.65; 95% CI, 1.19-2.27). Subgroup analysis revealed that the correlation was significant only in men. A significant association occurred between the second quartile of urinary nickel and liver fibrosis (OR 1.88; 95% CI, 1.22-2.90). Restricted cubic spline showed that the relationship was linear between urinary nickel and NAFLD and non-monotonic, inverse U-shaped between urinary nickel and liver fibrosis. This cross-sectional study indicated that the risk of NAFLD is associated with urinary nickel, and this correlation was only present among males.

8.
Sci Adv ; 10(13): eadk7955, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38536926

ABSTRACT

Directly activating CD8+ T cells within the tumor through antigen-presenting cells (APCs) hold promise for tumor elimination. However, M2-like tumor-associated macrophages (TAMs), the most abundant APCs in tumors, hinder CD8+ T cell activation due to inefficient antigen cross-presentation. Here, we demonstrated a personalized nanotherapeutic platform using surgical tumor-derived galactose ligand-modified cancer cell membrane (CM)-coated cysteine protease inhibitor (E64)-loaded mesoporous silica nanoparticles for postsurgical cancer immunotherapy. The platform targeted M2-like TAMs and released E64 within lysosomes, which reshaped antigen cross-presentation and directly activated CD8+ T cells, thus suppressing B16-OVA melanoma growth. Furthermore, this platform, in combination with anti-PD-L1 antibodies, enhanced the therapeutic efficacy and substantially inhibited 4T1 tumor growth. CMs obtained from surgically resected tumors were used to construct a personalized nanotherapeutic platform, which, in synergy with immune checkpoint blockade (ICB), effectively inhibited postsurgical tumor recurrence in 4T1 tumor. Our work offered a robust, safe strategy for cancer immunotherapy and prevention of postsurgical tumor recurrence.


Subject(s)
Melanoma, Experimental , Tumor-Associated Macrophages , Animals , Tumor-Associated Macrophages/pathology , CD8-Positive T-Lymphocytes , Neoplasm Recurrence, Local , Antigen-Presenting Cells , Antigens , Melanoma, Experimental/pathology , Immunotherapy
9.
EMBO Rep ; 25(3): 1361-1386, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38332150

ABSTRACT

Non-alcoholic fatty liver disease is a chronic liver abnormality that exhibits high variability and can lead to liver cancer in advanced stages. Hepatic ablation of SIRT6 results in fatty liver disease, yet the potential mechanism of SIRT6 deficiency, particularly in relation to downstream mediators for NAFLD, remains elusive. Here we identify Serpina12 as a key gene regulated by Sirt6 that plays a crucial function in energy homeostasis. Specifically, Sirt6 suppresses Serpina12 expression through histone deacetylation at its promoter region, after which the transcription factor, Cebpα, binds to and regulates its expression. Sirt6 deficiency results in an increased expression of Serpina12 in hepatocytes, which enhances insulin signaling and promotes lipid accumulation. Importantly, CRISPR-Cas9 mediated Serpina12 knockout in the liver ameliorated fatty liver disease caused by Sirt6 ablation. Finally, we demonstrate that Sirt6 functions as a tumor suppressor in the liver, and consequently, deletion of Sirt6 in the liver leads to not only the spontaneous development of tumors but also enhanced tumorigenesis in response to DEN treatment or under conditions of obesity.


Subject(s)
Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Sirtuins , Humans , Sirtuins/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Hepatocytes/metabolism , Liver Neoplasms/metabolism
10.
Cell Death Dis ; 15(1): 34, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212325

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) is the second most common malignancy among primary liver cancers, with an increasing overall incidence and poor prognosis. The intertumoral and intratumoral heterogeneity of ICC makes it difficult to find efficient drug therapies. Therefore, it is essential to identify tumor suppressor genes and oncogenes that induce ICC formation and progression. Here, we performed CRISPR/Cas9-mediated genome-wide screening in a liver-specific Smad4/Pten knockout mouse model (Smad4co/co;Ptenco/co;Alb-Cre, abbreviated as SPC), which normally generates ICC after 6 months, and detected that mutations in Trp53, Fbxw7, Inppl1, Tgfbr2, or Cul3 markedly accelerated ICC formation. To illustrate the potential mechanisms, we conducted transcriptome sequencing and found that multiple receptor tyrosine kinases were activated, which mainly upregulated the PI3K pathway to induce cell proliferation. Remarkably, the Cul3 mutation stimulated cancer progression mainly by altering the immune microenvironment, whereas other mutations promoted the cell cycle. Moreover, Fbxw7, Inppl1, Tgfbr2, and Trp53 also affect inflammatory responses, apelin signaling, mitotic spindles, ribosome biogenesis, and nucleocytoplasmic transport pathways, respectively. We further examined FDA-approved drugs for the treatment of liver cancer and performed high-throughput drug screening of the gene-mutant organoids. Different drug responses and promising drug therapies, including chemotherapy and targeted drugs, have been discovered for ICC.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Mice , Animals , Receptor, Transforming Growth Factor-beta Type II/metabolism , F-Box-WD Repeat-Containing Protein 7/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Mutation/genetics , Signal Transduction , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Tumor Microenvironment
11.
Acta Biomater ; 176: 356-366, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38160854

ABSTRACT

Atherosclerosis is the main cause of a series of fatal cardiovascular diseases, characterized by pathological accumulation of apoptotic cells and lipids. Pro-phagocytic antibody-based or pro-autophagy gene-based therapies are currently being explored to stimulate the phagocytic clearance of apoptotic cells and lipid metabolism; however, monotherapies are only moderately effective or require high doses with unacceptable side effects. Herein, we engineered a specific nano-bioconjugate loaded with antisense oligonucleotides (ASOs) of mammalian target of rapamycin (mTOR) and modified with anti-signal-regulated protein-α antibody (aSIRPα) for macrophage-mediated atherosclerosis therapy. The specific nano-bioconjugate utilized acid-responsive calcium phosphate (CaP) as a carrier to load mTOR ASOs, coated with lipid on the surface of CaP nanoparticles (ASOs@CaP), and subsequently modified with aSIRPα. The resulting nano-bioconjugates could accumulate within atherosclerotic plaques, target to macrophages and reactivate lesional phagocytosis through blocking the CD47-SIRPα signaling axis. In addition, efficient delivery of mTOR ASOs inhibited mTOR expression, which significantly restored impaired autophagy. The combined action of mTOR ASOs and aSIRPα reduced apoptotic cells and lipids accumulation. This nanotherapy significantly reduced plaque burden and inhibited progression of atherosclerotic lesions. These results show the potential of specific nano-bioconjugates for the prevention of atherosclerotic cardiovascular disease. STATEMENT OF SIGNIFICANCE: Atherosclerosis is the main cause of a series of fatal cardiovascular diseases. Pro-phagocytic antibody-based or pro-autophagy gene-based therapies are currently being explored to stimulate the phagocytic clearance of apoptotic cells and lipid metabolism; however, monotherapies are only moderately effective or require high doses with unacceptable side effects. Herein, we engineered a specific nano-bioconjugate loaded with antisense oligonucleotides (ASOs) of mammalian target of rapamycin (mTOR) and modified with anti-signal-regulated protein-α antibody (aSIRPα) for macrophage-mediated atherosclerosis therapy. Our study demonstrated that the combined action of mTOR ASOs and aSIRPα reduced apoptotic cells and lipids accumulation. This nanotherapy significantly reduced plaque burden and inhibited progression of atherosclerotic lesions. These results show the potential of specific nano-bioconjugates for the prevention of atherosclerotic cardiovascular disease.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Plaque, Atherosclerotic , Humans , Sirolimus/pharmacology , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , TOR Serine-Threonine Kinases/metabolism , Lipids
13.
Nutrients ; 15(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37960269

ABSTRACT

The etiology of numerous metabolic disorders is characterized by hepatic insulin resistance (IR). Uncertainty surrounds miR-34a's contribution to high-fat-induced hepatic IR and its probable mechanism. The role and mechanism of miR-34a and its target gene ENO3 in high-fat-induced hepatic IR were explored by overexpressing/suppressing miR-34a and ENO3 levels in in vivo and in vitro experiments. Moreover, as a human hepatic IR model, the miR-34a/ENO3 pathway was validated in patients with non-alcoholic fatty liver disease (NAFLD). The overexpression of hepatic miR-34a lowered insulin signaling and altered glucose metabolism in hepatocytes. In contrast, reducing miR-34a expression significantly reversed hepatic IR indices induced by palmitic acid (PA)/HFD. ENO3 was identified as a direct target gene of miR-34a. Overexpression of ENO3 effectively inhibited high-fat-induced hepatic IR-related indices both in vitro and in vivo. Moreover, the expression patterns of members of the miR-34a/ENO3 pathway in the liver tissues of NAFLD patients was in line with the findings of both cellular and animal studies. A high-fat-induced increase in hepatic miR-34a levels attenuates insulin signaling and impairs glucose metabolism by suppressing the expression of its target gene ENO3, ultimately leading to hepatic IR. The miR-34a/ENO3 pathway may be a potential therapeutic target for hepatic IR and related metabolic diseases.


Subject(s)
Insulin Resistance , MicroRNAs , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Liver/metabolism , Insulin/metabolism , Glucose/metabolism , Mice, Inbred C57BL
14.
J Control Release ; 362: 524-535, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37673307

ABSTRACT

Chimeric antigen receptor (CAR)-modified natural killer (NK) cells are recognized as promising immunotherapeutic agents for cancer treatment. However, the efficacy and trafficking of CAR-NK cells in solid tumors are hindered by the complex barriers present in the tumor microenvironment (TME). We have developed a novel strategy that utilizes living CAR-NK cells as carriers to deliver anticancer drugs specifically to the tumor site. We also introduce a time-lapse method for evaluating the efficacy and tumor specificity of CAR-NK cells using a two-photon microscope in live mouse models and three-dimensional (3D) tissue slide cultures. Our results demonstrate that CAR-NK cells exhibit enhanced antitumor immunity when combined with photosensitive chemicals in both in vitro and in vivo tumor models. Additionally, we have successfully visualized the trafficking, infiltration, and accumulation of drug-loaded CAR-NK cells in deeply situated TME using non-invasive intravital two-photon microscopy. Our findings highlight that tumor infiltration of CAR-NK cells can be intravitally monitored through the two-photon microscope approach. In conclusion, our study demonstrates the successful integration of CAR-NK cells as drug carriers and paves the way for combined cellular and small-molecule therapies in cancer treatment. Furthermore, our 3D platform offers a valuable tool for assessing the behavior of CAR cells within solid tumors, facilitating the development and optimization of immunotherapeutic strategies with clinical imaging approaches.

15.
Front Biosci (Landmark Ed) ; 28(8): 181, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37664932

ABSTRACT

BACKGROUND: A long-term consumption of saturated fat significantly increases the concentration of saturated fatty acids in serum, which accelerates the appearance of senescence markers in ß-cells and leads to their dysfunction. An understanding of the mechanisms underlying ß-cell senescence induced by stearic acid and the exploration of effective agents preventing it remains largely unclear. Here, we aimed to investigate the protective effect of metformin against stearic acid-treated ß-cell senescence and to assess the involvement of miR-297b-5p in this process. METHODS: To identify senescence, we measured senescence-associated ß-galactosidase activity and the expression of senescence-related genes. Gain and loss of function approaches were applied to explore the role of miR-297b-5p in stearic acid-induced ß-cell senescence. Bioinformatics analysis and a luciferase activity assay were used to predict the downstream targets of miR-297b-5p. RESULTS: Stearic acid markedly induced senescence and suppressed miR-297b-5p expression in mouse ß-TC6 cells, which were significantly alleviated by metformin. After transfection of miR-297b-5p mimics, stearic acid-evoked ß-cell senescence was remarkably prevented. Insulin-like growth factor-1 receptor was identified as a direct target of miR-297b-5p. Inhibition of the insulin-like growth factor-1 receptor prevented stearic acid-induced ß-cell senescence and dysfunction. Moreover, metformin alleviates the impairment of the miR-297b-5p inhibitor in ß-TC6 cells. Additionally, long-term consumption of a high-stearic-acid diet significantly increased senescence and reduced miR-297b-5p expression in mouse islets. CONCLUSIONS: These findings imply that metformin alleviates ß-cell senescence by stearic acid through upregulating miR-297b-5p to suppress insulin-like growth factor-1 receptor expression, thereby providing a potential target to not only prevent high fat-diet-induced ß-cell dysfunction but also for metformin therapy in type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Metformin , MicroRNAs , Receptor, IGF Type 1 , Animals , Mice , Insulin-Like Growth Factor I , Metformin/pharmacology , MicroRNAs/genetics , Stearic Acids/pharmacology , Receptor, IGF Type 1/genetics
16.
Clin Cancer Res ; 29(19): 3986-4001, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37527025

ABSTRACT

PURPOSE: Sarcoma is the second most common solid tumor type in children and adolescents. The high level of tumor heterogeneity as well as aggressive behavior of sarcomas brings serious difficulties to developing effective therapeutic strategies for clinical application. Therefore, it is of great importance to identify accurate biomarkers for early detection and prognostic prediction of sarcomas. EXPERIMENTAL DESIGN: In this study, we characterized three subtypes of sarcomas based on tumor immune infiltration levels (TIIL), and constructed a prognosis-related competing endogenous RNA (ceRNA) network to investigate molecular regulations in the sarcoma tumor microenvironment (TME). We further built a subnetwork consisting of mRNAs and lncRNAs that are targets of key miRNAs and strongly correlated with each other in the ceRNA network. After validation using public data and experiments in vivo and in vitro, we deeply dug the biological role of the miRNAs and lncRNAs in a subnetwork and their impact on TME. RESULTS: Altogether, 5 miRNAs (hsa-mir-125b-2, hsa-mir-135a-1, hsa-mir92a-2, hsa-mir-181a-2, and hsa-mir-214), 3 lncRNAs (LINC00641, LINC01146, and LINC00892), and 10 mRNAs (AGO2, CXCL10, CD86, CASP1, IKZF1, CD27, CD247, CD69, CCR2, and CSF2RB) in the subnetwork were identified as vital regulators to shape the TME. On the basis of the systematic network, we identified that trichostatin A, a pan-HDAC inhibitor, could potentially regulate the TME of sarcoma, thereby inhibiting the tumor growth. CONCLUSIONS: Our study identifies a ceRNA network as a promising biomarker for sarcoma. This system provides a more comprehensive understanding and a novel perspective of how ceRNAs are involved in shaping sarcoma TME.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Sarcoma , Child , Humans , Adolescent , Prognosis , RNA, Long Noncoding/genetics , Tumor Microenvironment/genetics , Gene Regulatory Networks , MicroRNAs/genetics , RNA, Messenger/genetics , Sarcoma/genetics
17.
J Am Chem Soc ; 145(32): 17926-17935, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37535859

ABSTRACT

RNA-cleaving DNAzymes hold great promise as gene silencers, and spatiotemporal control of their activity through site-specific reactions is crucial but challenging for on-demand therapy. We herein report a novel design of a bioorthogonally inducible DNAzyme that is deactivated by site-specific installation of bioorthogonal caging groups on the designated backbone sites but restores the activity via a phosphine-triggered Staudinger reduction. We perform a systematical screening for installing the caging groups on each backbone site in the catalytic core of 10-23 DNAzyme and identify an inducible DNAzyme with very low leakage activity. This design is demonstrated to achieve bioorthogonally controlled cleavage of exogenous and endogenous mRNA in live cells. It is further extended to photoactivation and endogenous stimuli activation for spatiotemporal or targeted control of gene silencing. The bioorthogonally inducible DNAzyme is applied to a triple-negative breast cancer mouse model using a lipid nanoparticle delivery system, demonstrating high efficiency in knockdown of Lcn2 oncogenes and substantial suppression of tumor growth, thus highlighting the potential of precisely controlling the DNAzyme functions for on-demand gene therapy.


Subject(s)
DNA, Catalytic , Animals , Mice , DNA, Catalytic/genetics , RNA/genetics , RNA, Messenger
18.
Angew Chem Int Ed Engl ; 62(41): e202307025, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37615278

ABSTRACT

DNA logic circuits (DLC) enable the accurate identification of specific cell types, such as cancer cells, but they face the challenges of weak output signals and a lack of competent platforms that can efficiently deliver DLC components to the target site in the living body. To address these issues, we rationally introduced a cascaded biological amplifier module based on the Primer Exchange Reaction inspired by electronic circuit amplifier devices. As a paradigm, three abnormally expressed Hela cell microRNAs (-30a, -17, and -21) were chosen as "AND" gate inputs. DLC response to these inputs was boosted by the amplifier markedly enhancing the output signal. More importantly, the encapsulation of DLC and amplifier components into ZIF-8 nanoparticles resulted in their efficient delivery to the target site, successfully distinguishing the Hela tumor subtype from other tumors in vivo. Thus, we envision that this strategy has great potential for clinical cancer diagnosis.


Subject(s)
Nanoparticles , Neoplasms , Humans , HeLa Cells , Biomimetics , DNA , Logic , Neoplasms/diagnosis
19.
Cell Regen ; 12(1): 24, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37378693

ABSTRACT

Intestinal cancer is one of the most frequent and lethal types of cancer. Modeling intestinal cancer using organoids has emerged in the last decade. Human intestinal cancer organoids are physiologically relevant in vitro models, which provides an unprecedented opportunity for fundamental and applied research in colorectal cancer. "Human intestinal cancer organoids" is the first set of guidelines on human intestinal organoids in China, jointly drafted and agreed by the experts from the Chinese Society for Cell Biology and its branch society: the Chinese Society for Stem Cell Research. This standard specifies terms and definitions, technical requirements, test methods for human intestinal cancer organoids, which apply to the production and quality control during the process of manufacturing and testing of human intestinal cancer organoids. It was released by the Chinese Society for Cell Biology on 24 September 2022. We hope that the publication of this standard will guide institutional establishment, acceptance and execution of proper practocal protocols, and accelerate the international standardization of human intestinal cancer organoids for clinical development and therapeutic applications.

20.
Pharmacol Res ; 194: 106830, 2023 08.
Article in English | MEDLINE | ID: mdl-37343647

ABSTRACT

Drug combination therapy is a highly effective approach for enhancing the therapeutic efficacy of anti-cancer drugs and overcoming drug resistance. However, the innumerable possible drug combinations make it impractical to screen all synergistic drug pairs. Moreover, biological insights into synergistic drug pairs are still lacking. To address this challenge, we systematically analyzed drug combination datasets curated from multiple databases to identify drug pairs more likely to show synergy. We classified drug pairs based on their MoA and discovered that 110 MoA pairs were significantly enriched in synergy in at least one type of cancer. To improve the accuracy of predicting synergistic effects of drug pairs, we developed a suite of machine learning models that achieve better predictive performance. Unlike most previous methods that were rarely validated by wet-lab experiments, our models were validated using two-dimensional cell lines and three-dimensional tumor slice culture (3D-TSC) models, implying their practical utility. Our prediction and validation results indicated that the combination of the RTK inhibitors Lapatinib and Pazopanib exhibited a strong therapeutic effect in breast cancer by blocking the downstream PI3K/AKT/mTOR signaling pathway. Furthermore, we incorporated molecular features to identify potential biomarkers for synergistic drug pairs, and almost all potential biomarkers found connections between drug targets and corresponding molecular features using protein-protein interaction network. Overall, this study provides valuable insights to complement and guide rational efforts to develop drug combination treatments.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Phosphatidylinositol 3-Kinases , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction , Breast Neoplasms/drug therapy , Drug Delivery Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...