Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Arch Pharm (Weinheim) ; 357(4): e2300445, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38227420

ABSTRACT

2-Styrylchromones have been shown to possess a broad spectrum of biological activities. Replacing the carbon atom in 2-styrylchromones with a nitrogen atom in the benzene rings forms 2-(pyridylvinyl)chromen-4-ones (aza-2-styrylchromones). We have synthesized a series of novel 2-(pyridylvinyl)chromen-4-ones and their pyridine N-oxides to evaluate them as potential anticancer agents against human non-small-cell lung cancer cells (A549). Among the 18 synthesized molecules, compounds 18 and 8a exhibited comparable inhibitory effects to 5-fluorouracil and showed no toxicity against normal cells.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Fluorouracil , Cell Line, Tumor , Drug Screening Assays, Antitumor
3.
Phytomedicine ; 108: 154478, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36265255

ABSTRACT

Activation of mitogen-activated protein kinase (MAPK) and PI3K signaling confers resistance against sorafenib, a mainstay treatment for advanced hepatocellular carcinoma (HCC). Antrocin and ovatodiolide constitute as the most potent secondary metabolites isolated from Antrodia camphorata and Anisomeles indica, respectively. Both natural compounds have recently gained a lot of attention due to their putative inhibition of MAPK and PI3K signaling in various solid cancers. However, whether their combination is effective in HCC remains unknown. Here, we investigated their effect, alone or in various combinations, on MAPK and PI3K signaling pathways in HCC cells. An array of in vitro study were used to investigate anticancer and stemness effects to treat HCC, such as cytotoxicity, drug combination index, migration, invasion, colony formation, and tumor sphere formation. Drug effect in vivo was evaluated using mouse xenograft models. In this study, antrocin and ovatodiolide synergistically inhibited the SNU387, Hep3B, Mahlavu, and Huh7 cell lines. Sequential combination treatment of Huh7 and Mahlavu with ovatodiolide followed by antrocin resulted stronger cytotoxic effect than did treatment with antrocin followed by ovatodiolide, their simultaneous administration, antrocin alone, or ovatodiolide alone. In the Huh7 and Mahlavu cell lines, ovatodiolide→antrocin significantly suppressed colony formation and proliferation as well as markedly downregulated ERK1/2, Akt, and mTOR expression. Inhibition of ERK1/2 and Akt/mTOR signaling by ovatodiolide→antrocin suppressed ribosomal biogenesis, autophagy, and cancer stem cell-like phenotypes and promoted apoptosis in Huh7 and Mahlavu cells. The sorafenib-resistant clone of Huh7 was effectively inhibited by synergistic combination of both compound in vitro. Eventually, the ovatodiolide→antrocin combination synergistically suppressed the growth of HCC xenografts. Taken together, our findings suggested that ovatodiolide→antrocin combination may represent potential therapeutic approach for patients with advanced HCC.


Subject(s)
Carcinoma, Hepatocellular , Diterpenes , Liver Neoplasms , Animals , Humans , Mice , Apoptosis , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ribosomes/metabolism , Ribosomes/pathology , Sorafenib , TOR Serine-Threonine Kinases/metabolism , Lactones/pharmacology , Diterpenes/pharmacology , Sesquiterpenes/pharmacology , Neoplastic Stem Cells/drug effects
4.
Phytomedicine ; 100: 154062, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35366491

ABSTRACT

BACKGROUND: The current standard therapy for metastatic pancreatic cancer is ineffective, necessitating a new treatment approach for prognosis improvement. The urokinase-plasmin activator (uPA) is a critical factor in epithelial-mesenchymal transition (EMT) and cancer metastasis, but its underlying mechanisms in pancreatic cancer remains elusive. METHODS: We investigated uPA expression in our pancreatic cancer cohort. A bioinformatics approach was used to further determine the role of uPA in pancreatic cancer. We employed MiaPaCa-2 and PANC-1 cell lines to investigate how uPA regulates EMT and metastasis in pancreatic cancer and present a novel approach aimed at inhibiting uPA in pancreatic cancer. RESULTS: We observed that higher uPA mRNA expression was significantly associated with overall-poor survival and progression-free survival in pancreatic cancer. uPA was highly expressed in tumor tissue. Gene set enrichment analysis revealed a positive association between uPA mRNA expression and EMT and transforming growth factor ß (TGF-ß) signaling pathways. Moreover, shRNA-mediated uPA gene knockdown reduced plasmin, MMP14, and TGF-ß activation, leading to the inhibition of PANC-1 cells' EMT marker expression, migration, invasion, and cell viability. Notably, 4-acetyl-antroquinonol B (4-AAQB) treatment suppressed MiaPaCa-2 and PANC-1 cell migratory and invasive abilities by inhibiting the uPA/MMP14/TGF-ß axis through upregulation of miR-181d-5p. In the xenograft mouse model of orthotropic pancreatic cancer, 4-AAQB treatment has reduced tumor growth and metastasis rate by deactivating uPA and improving the survival of the mice model. CONCLUSION: Accordingly, to extent of our knowledge and previous studies, we demonstrated that 4-AAQB is an anti Pan-Cancer drug, and may inhibit pancreatic cancer EMT and metastasis and serve as a new therapeutic approach for patients with late-stage pancreatic cancer.


Subject(s)
Pancreatic Neoplasms , Urokinase-Type Plasminogen Activator , Animals , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Fibrinolysin/pharmacology , Humans , Matrix Metalloproteinase 14/pharmacology , Mice , Pancreatic Neoplasms/pathology , RNA, Messenger , Transforming Growth Factor beta/metabolism , Ubiquinone/analogs & derivatives , Urokinase-Type Plasminogen Activator/genetics , Pancreatic Neoplasms
5.
Antioxidants (Basel) ; 11(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35204266

ABSTRACT

The rhizome of Anemarrhena asphodeloides Bunge (AA, family Liliaceae) is a famous and frequently used herbal drug in the traditional medicine of Northeast Asia, under vernacular name "zhimu". A. asphodeloides has been used as an anti-inflammatory, antipyretic, anti-platelet aggregation, anti-depressant, and anti-diabetic agent in traditional Chinese medicine. We examined the antioxidant, anti-acetylcholinesterase (AChE), and anti-α-glucosidase activities of various solvent extracts and the main bioactive compounds from the rhizome of A. asphodeloides. Acetone extract exhibited comparatively high antioxidant activities by 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, and ferric-reducing antioxidant power (FRAP) assays. A water extract exhibited relatively strong antioxidant activity by superoxide radical scavenging test. Furthermore, dichloromethane, chloroform, and n-hexane extracts showed significant anti-α-glucosidase activities. Finally, ethanol and dichloromethane extracts exhibited relatively strong AChE inhibitory activity. HPLC analysis was used to examine and compare various solvent extracts for their compositions of isolates. We isolated four major chemical constituents and analyzed their antioxidant, anti-α-glucosidase, and AChE inhibitory activities. The bioactivity assays showed that mangiferin displayed the most potential antioxidant activities via FRAP, ABTS, DPPH, and superoxide assays and also exhibited the most effective anti-AChE and anti-α-glucosidase activities among all the isolates. The present study suggests that A. asphodeloides and its active extracts and components are worth further investigation and might be expected to develop as a candidate for the treatment or prevention of oxidative stress-related diseases, AChE inhibition, and hyperglycemia.

6.
Antioxidants (Basel) ; 11(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35204280

ABSTRACT

Portulaca oleracea is a well-known species for traditional medicine and food homology in Taiwan. In traditional medicine, P. oleracea is also used to treat gastrointestinal disorders, liver inflammation, fever, severe inflammation, and headaches. We investigated antioxidant, anti-tyrosinase, and anti-α-glucosidase activities of various solvent extracts and major bioactive components from P. oleracea. Ethanol and acetone extracts showed potent DPPH, ABTS, and hydroxyl radical scavenging activities. Chloroform and n-hexane extracts displayed significant superoxide radical scavenging activity. Furthermore, ethyl acetate and acetone extracts of P. oleracea showed potent anti-tyrosinase and anti-α-glucosidase activities. Examined and compared to the various solvent extracts for their chemical compositions using HPLC analysis, we isolated seven major compounds and analyzed their antioxidant, anti-tyrosinase, and anti-α-glucosidase activities. Seven active compounds of P. oleracea, especially quercetin, rosmarinic acid, and kaempferol, exhibited obvious antioxidant, anti-tyrosinase, and anti-α-glucosidase activities. The molecular docking model and the hydrophilic interactive mode of tyrosinase and α-glucosidase revealed that active compounds might have a higher antagonistic effect than commonly inhibitors. Our result shows that the active solvent extracts and their components of P. oleracea have the potential as natural antioxidants, tyrosinase and α-glucosidase inhibitors. Our results suggest that the active solvent extracts of P. oleracea and their components have potential as natural antioxidants, tyrosinase and α-glucosidase inhibitors.

7.
Mar Drugs ; 19(8)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34436247

ABSTRACT

Three new and uncommon chromone analogs, epiremisporine F (1), epiremisporine G (2), and epiremisporine H (3), were isolated from marine-origin Penicillium citrinum. Among the isolated compounds, compounds 2-3 remarkably suppressed fMLP-induced superoxide anion generation by human neutrophils, with IC50 values of 31.68 ± 2.53, and 33.52 ± 0.42 µM, respectively. Compound 3 exhibited cytotoxic activities against human colon carcinoma (HT-29) and non-small lung cancer cell (A549) with IC50 values of 21.17 ± 4.89 and 31.43 ± 3.01 µM, respectively, and Western blot assay confirmed that compound 3 obviously induced apoptosis of HT-29 cells, via Bcl-2, Bax, and caspase 3 signaling cascades.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Aquatic Organisms/chemistry , Chromones/pharmacology , Penicillium/chemistry , Cell Line, Tumor/drug effects , Humans , Inhibitory Concentration 50 , Neutrophils/drug effects
8.
Int J Mol Sci ; 22(14)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34299137

ABSTRACT

The KRAS mutation is one of the leading driver mutations in colorectal cancer (CRC), and it is usually associated with poor prognosis and drug resistance. Therapies targeting the epidermal growth factor receptor (EFGR) are widely used for end-stage CRC. However, patients with KRAS mutant genes cannot benefit from this therapy because of Ras signaling activation by KRAS mutant genes. Our previous study revealed the anti-proliferative effect of 4-acetyl-antroquinonol B (4-AAQB) on CRC cells, but whether the drug is effective in KRAS-mutant CRC remains unknown. We screened CRC cell lines harboring the KRAS mutation, namely G12A, G12C, G12V and G13D, with one wild type cell line as the control; SW1463 and Caco-2 cell lines were used for further experiments. Sulforhodamine B assays, together with the clonogenicity and invasion assay, revealed that KRAS-mutant SW1463 cells were resistant to cetuximab; however, 4-AAQB treatment effectively resensitized CRC cells to cetuximab through the reduction of colony formation, invasion, and tumorsphere generation and of oncogenic KRAS signaling cascade of CRC cells. Thus, inducing cells with 4-AAQB before cetuximab therapy could resensitize KRAS-mutant, but not wild-type, cells to cetuximab. Therefore, we hypothesized that 4-AAQB can inhibit KRAS. In silico analysis of the publicly available GEO (GSE66548) dataset of KRAS-mutated versus KRAS wild-type CRC patients confirmed that miR-193a-3p was significantly downregulated in the former compared with the latter patient population. Overexpression of miR-193a-3p considerably reduced the oncogenicity of both CRC cells. Furthermore, KRAS is a key target of miR-193a-3p. In vivo treatment with the combination of 4-AAQB and cetuximab significantly reduced the tumor burden of a xenograft mice model through the reduction of the expression of oncogenic markers (EGFR) and p-MEK, p-ERK, and c-RAF/p-c-RAF signaling, with the simultaneous induction of miR-193a-3p expression in the plasma. In summary, our findings provide strong evidence regarding the therapeutic effect of 4-AAQB on KRAS-mutant CRC cells. Furthermore, 4-AAQB effectively inhibits Ras singling in CRC cells, through which KRAS-mutant CRC can be resensitized to cetuximab.


Subject(s)
Biomarkers, Tumor/metabolism , Cetuximab/pharmacology , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Ubiquinone/analogs & derivatives , Animals , Antineoplastic Agents, Immunological/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Drug Synergism , Drug Therapy, Combination , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Prognosis , Tumor Cells, Cultured , Ubiquinone/chemistry , Ubiquinone/pharmacology , Xenograft Model Antitumor Assays , raf Kinases/genetics , raf Kinases/metabolism , ras Proteins/genetics , ras Proteins/metabolism
9.
Cancers (Basel) ; 13(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203465

ABSTRACT

Sorafenib is used for treating advanced hepatocellular carcinoma (HCC), but some patients acquire sorafenib resistance. We investigated the mechanisms underlying acquired sorafenib resistance in HCC cells and targeted them to re-sensitize them to sorafenib. In silico analysis indicated that toll-like receptor (TLR)-9 was significantly overexpressed, and that miRNA (hsa-miR-30a-5p) was downregulated in sorafenib-resistant HCC cells, which modulated HCC cell proliferation, oxidative stress, and apoptosis. TLR9 overexpression increased HCC cell proliferation, whereas TLR9 inhibition from hydroxychloroquine (HCQ) decreased HCC cell proliferation, tumor growth, oxidative stress marker (SOD1), and the formation of autophagosome bodies (reduced ATG5 and Beclin-1 expression). Moreover, HCQ treatment reduced epithelial-mesenchymal transition, leading to decreased clonogenicity, migratory ability, and invasiveness. HCQ targeted and reduced the self-renewal capacity phenotype by inhibiting tumorsphere generation. Both in vitro and in vivo results demonstrated the synergistic effect of the HCQ-sorafenib combination on sorafenib-resistant HCC (Huh7-SR) cells, increasing their sensitivity to treatment by modulating TLR9, autophagy (ATG5 and Beclin-1), oxidative stress (SOD1), and apoptosis (c-caspase3) expression and thus overcoming the drug resistance. This study's findings indicate that TLR9 overexpression occurs in sorafenib-resistant HCC cells and that its downregulation aids HCC suppression. Moreover, HCQ treatment significantly increases sorafenib's effect on sorafenib-resistant HCC cells.

10.
Cancers (Basel) ; 13(11)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199353

ABSTRACT

BACKGROUND: Hepatitis virus is a major risk factor for liver cancer. The mitochondrial dysfunction IFN gamma-related pathways are activated after virus infection. Jak family-related protein is involved in the downstream of IFN gamma-related pathways. However, the effect of the IFNGR-JAK-STAT pathway acting as functional regulators of their related protein expression on virus infection and hepatocellular carcinoma (HCC) remains unclear. Interestingly, the role of the DNA repair gene (PARP1) in therapy resistant cancers also has not been studied and explored well. In this study, we hypothesized that momelotinib could suppress the progression of HCC by targeting Jak family related and PARP1 DNA repair protein. Based on this observation, we link the relevant targets of the JAK family and the potential applications of targeted therapy inhibitors. METHODS: We analyzed possible synergism between momelotinib and sorafenib in hepatitis virus-associated liver cancer. Immunostaining, colony formation assay, cell invasion, migration, and tumorsphere-formation assay were used for drug cytotoxicity, cell viability, and possible molecular mechanism. RESULT: We first demonstrated that the expression of Jak1 and 2 is significantly upregulated in vHCC than in nvHCC/normal liver tissues. In addition, the gene expression of IFN gamma-related pathways is activated after virus infection. Additionally, we found that momelotinib significantly inhibited the growth of HCC cells and reduces the expression of Jak2, which showed the importance of momelotinib in targeting Jak2 and reducing tumorigenesis in HCC. Meanwhile, momelotinib effectively inhibited the IFNGR-JAK-STAT pathway and reduced the migratory/invasive ability of vHCC cells through down-regulating EMT biomarkers (E-cadherin and vimentin), transcription factor (Slug), and significantly inhibits the DNA damage repair enzyme PARP1. It also induced cell apoptosis of vHCC cells. Furthermore, the combined effect of momelotinib and sorafenib both at in vitro and in vivo synergistically suppresses the proliferation of vHCC cells and effectively reduces the tumor burden. CONCLUSIONS: Our results showed that momelotinib effectively suppressed the expression of the IFNGR-JAK-STAT-PARP1 pathway, which results in the downregulation of cancer stem cell genes and enhances the antitumor efficacy of sorafenib by initiating the expression of apoptosis-related genes and inhibiting the DNA repair gene in vHCC cells, thus maximizing its therapeutic potential for patients with HCC.

11.
Mar Drugs ; 19(1)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430124

ABSTRACT

Three new and rare chromone derivatives, epiremisporine C (1), epiremisporine D (2), and epiremisporine E (3), were isolated from marine-derived Penicillium citrinum, together with four known compounds, epiremisporine B (4), penicitrinone A (5), 8-hydroxy-1-methoxycarbonyl-6-methylxanthone (6), and isoconiochaetone C (7). Among the isolated compounds, compounds 2-5 significantly decreased fMLP-induced superoxide anion generation by human neutrophils, with IC50 values of 6.39 ± 0.40, 8.28 ± 0.29, 3.62 ± 0.61, and 2.67 ± 0.10 µM, respectively. Compounds 3 and 4 exhibited cytotoxic activities with IC50 values of 43.82 ± 6.33 and 32.29 ± 4.83 µM, respectively, against non-small lung cancer cell (A549), and Western blot assay confirmed that compounds 3 and 4 markedly induced apoptosis of A549 cells, through Bcl-2, Bax, and caspase 3 signaling cascades.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Chromones/chemistry , Chromones/pharmacology , Penicillium/chemistry , A549 Cells , Adult , Anti-Bacterial Agents/pharmacology , Caspase 3/drug effects , Cell Line, Tumor , Fermentation , Humans , In Vitro Techniques , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Structure , Neutrophils/drug effects , Neutrophils/metabolism , Proto-Oncogene Proteins c-bcl-2/drug effects , Signal Transduction/drug effects , Superoxides/chemistry , Young Adult , bcl-2-Associated X Protein/drug effects
12.
Molecules ; 25(21)2020 Nov 08.
Article in English | MEDLINE | ID: mdl-33171671

ABSTRACT

Myristica fragrans is a well-known species for flavoring many food products and for formulation of perfume and medicated balm. It is also used to treat indigestion, stomach ulcers, liver disorders, and, as emmenagogue, diaphoretic, diuretic, nervine, and aphrodisiac. We examined antioxidant properties and bioactive compounds in various solvent extracts from the seeds of M. fragrans. Methanol, ethanol, and acetone extracts exhibited relatively strong antioxidant activities by 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), superoxide radical, and hydroxyl radical scavenging tests. Furthermore, methanol extracts also displayed significant anti-α-glucosidase activity. Examined and compared to the various solvent extracts for their chemical compositions using HPLC analysis, we isolated the ten higher content compounds and analyzed antioxidant and anti-α-glucosidase activities. Among the isolates, dehydrodiisoeugenol, malabaricone B and malabaricone C were main antioxidant components in seeds of M. fragrans. Malabaricone C exhibited stronger antioxidant capacities than others based on lower half inhibitory concentration (IC50) values in DPPH and ABTS radical scavenging assays, and it also showed significant inhibition of α-glucosidase. These results shown that methanol was found to be the most efficient solvent for extracting the active components from the seeds of M. fragrans, and this material is a potential good source of natural antioxidant and α-glucosidase inhibitor.


Subject(s)
Antioxidants/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Myristica/chemistry , Plant Extracts/chemistry , Seeds/chemistry , Acetone/chemistry , Antioxidants/pharmacology , Ethanol/chemistry , Eugenol/analogs & derivatives , Eugenol/chemistry , Eugenol/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Methanol/chemistry , Resorcinols/chemistry , Resorcinols/pharmacology , Solvents/chemistry , alpha-Glucosidases/metabolism
13.
Chemosphere ; 250: 126219, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32105856

ABSTRACT

Ionic liquids (ILs (1-butyl-3-methylimidazolium chloride ([C4mim][Cl]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]))) were used as heat transfer fluids for solar thermal collectors. The additive of ILs was biochar containing copper and silver nanoparticles (Cu-Ag/biochar) to improve the adsorption of solar irradiation and thermal conductivities. After impregnation and reduction processes, nanoparticles such as Cu, CuO, Cu(OH)2, Ag, and Ag2O were found in the biochar by X-ray powder diffraction (XRD) spectroscopy. With adding 2% Cu-Ag/biochar into the ILs, the thermal conductivities of [C4mim][Cl] and [C4mim][BF4] containing 10% Cu-1% Ag/biochar were individually increased 9.2 and 6.6 times compared to the base ILs due to the high graphitization of biochar and metallic nanoparticles. The 1H NMR (nuclear magnetic resonance) features of the imidazole ring and methyl group in the ILs were highly disturbed due to the formation of weak or strong hydrogen bonds between the cations in ILs and Cu-Ag/biochar. The high hydrogen bond acceptance of anions in ILs also affected the thermal properties. The thermal properties of the metals/biochar [C4mim][Cl] were better than those of metals/biochar [C4mim][BF4] due to high hydrogen bond acceptance of [Cl]-. The strong hydrogen bonds between the Cu-Ag/biochar and the cations and anions in ILs result in thermal properties of heat transfer fluids. Under simulated sunlight, the temperatures of [C4mim][Cl] and [C4mim][BF4] containing 10% Cu-1% Ag/biochar rose from 304 to 345 and 340 K within 24 min, respectively. A novel heat transfer fluid was developed for high adsorption of irradiation, high thermal conductivities, and speedy transfer of heat.


Subject(s)
Metal Nanoparticles/chemistry , Models, Chemical , Adsorption , Anions/chemistry , Cations , Charcoal , Hydrogen Bonding , Imidazoles/chemistry , Ionic Liquids/chemistry , Silver
14.
Sci Rep ; 5: 9734, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25962757

ABSTRACT

Direct Cu-to-Cu bonding was achieved at temperatures of 150-250 °C using a compressive stress of 100 psi (0.69 MPa) held for 10-60 min at 10(-3) torr. The key controlling parameter for direct bonding is rapid surface diffusion on (111) surface of Cu. Instead of using (111) oriented single crystal of Cu, oriented (111) texture of extremely high degree, exceeding 90%, was fabricated using the oriented nano-twin Cu. The bonded interface between two (111) surfaces forms a twist-type grain boundary. If the grain boundary has a low angle, it has a hexagonal network of screw dislocations. Such network image was obtained by plan-view transmission electron microscopy. A simple kinetic model of surface creep is presented; and the calculated and measured time of bonding is in reasonable agreement.

SELECTION OF CITATIONS
SEARCH DETAIL
...