Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
World J Clin Cases ; 10(5): 1473-1484, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35211585

ABSTRACT

Pain is a common experience for inpatients, and intensive care unit (ICU) patients undergo more pain than other departmental patients, with an incidence of 50% at rest and up to 80% during common care procedures. At present, the management of persistent pain in ICU patients has attracted considerable attention, and there are many related clinical studies and guidelines. However, the management of transient pain caused by certain ICU procedures has not received sufficient attention. We reviewed the different management strategies for procedural pain in the ICU and reached a conclusion. Pain management is a process of continuous quality improvement that requires multidisciplinary team cooperation, pain-related training of all relevant personnel, effective relief of all kinds of pain, and improvement of patients' quality of life. In clinical work, which involves complex and diverse patients, we should pay attention to the following points for procedural pain: (1) Consider not only the patient's persistent pain but also his or her procedural pain; (2) Conduct multimodal pain management; (3) Provide combined sedation on the basis of pain management; and (4) Perform individualized pain management. Until now, the pain management of procedural pain in the ICU has not attracted extensive attention. Therefore, we expect additional studies to solve the existing problems of procedural pain management in the ICU.

2.
PLoS One ; 11(7): e0159132, 2016.
Article in English | MEDLINE | ID: mdl-27434276

ABSTRACT

BACKGROUND: We aimed to study the pathogenic roles of High-Mobility Group Box 1 (HMGB1) / Receptor-for-Advanced-Glycation-End-products (RAGE) signaling and pro-inflammatory cytokines in patients with active pulmonary tuberculosis (PTB). METHODS: A prospective study was conducted among non-HIV adults newly-diagnosed with active PTB at two acute-care hospitals (n = 80); age-and-sex matched asymptomatic individuals (tested for latent TB) were used for comparison (n = 45). Plasma concentrations of 8 cytokines/chemokines, HMGB1, soluble-RAGE, and transmembrane-RAGE expressed on monocytes/dendritic cells, were measured. Gene expression (mRNA) of HMGB1, RAGE, and inflammasome-NALP3 was quantified. Patients' PBMCs were stimulated with recombinant-HMGB1 and MTB-antigen (lipoarabinomannan) for cytokine induction ex vivo. RESULTS: In active PTB, plasma IL-8/CXCL8 [median(IQR), 6.0(3.6-15.1) vs 3.6(3.6-3.6) pg/ml, P<0.001] and IL-6 were elevated, which significantly correlated with mycobacterial load, extent of lung consolidation (rs +0.509, P<0.001), severity-score (rs +0.317, P = 0.004), and fever and hospitalization durations (rs +0.407, P<0.001). IL-18 and sTNFR1 also increased. Plasma IL-8/CXCL8 (adjusted OR 1.12, 95%CI 1.02-1.23 per unit increase, P = 0.021) and HMGB1 (adjusted OR 1.42 per unit increase, 95%CI 1.08-1.87, P = 0.012) concentrations were independent predictors for respiratory failure, as well as for ICU admission/death. Gene expression of HMGB1, RAGE, and inflammasome-NALP3 were upregulated (1.2-2.8 fold). Transmembrane-RAGE was increased, whereas the decoy soluble-RAGE was significantly depleted. RAGE and HMGB1 gene expressions positively correlated with cytokine levels (IL-8/CXCL8, IL-6, sTNFR1) and clinico-/radiographical severity (e.g. extent of consolidation rs +0.240, P = 0.034). Ex vivo, recombinant-HMGB1 potentiated cytokine release (e.g. TNF-α) when combined with lipoarabinomannan. CONCLUSION: In patients with active PTB, HMGB1/RAGE signaling and pro-inflammatory cytokines may play important roles in pathogenesis and disease manifestations. Our clinico-immunological data can provide basis for the development of new strategies for disease monitoring, management and control.


Subject(s)
Antigens, Neoplasm/genetics , HMGB1 Protein/genetics , Inflammation/genetics , Mitogen-Activated Protein Kinases/genetics , Tuberculosis, Pulmonary/genetics , Adult , Antigens, Neoplasm/biosynthesis , Female , Gene Expression Regulation, Bacterial , HIV/isolation & purification , HIV/pathogenicity , HMGB1 Protein/biosynthesis , Humans , Inflammation/microbiology , Inflammation/pathology , Interleukin-8/genetics , Male , Middle Aged , Mitogen-Activated Protein Kinases/biosynthesis , Signal Transduction , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology , Tumor Necrosis Factor-alpha/genetics
3.
Influenza Other Respir Viruses ; 7(5): 666-75, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23552014

ABSTRACT

BACKGROUND: We investigated the roles of Toll-like receptors (TLRs) in naturally occurring influenza. METHODS: A prospective, case - control study was conducted. Adults hospitalized with virologically confirmed influenza A infections (onset <48 hours, before treatment) were compared with age-/gender-matched controls. TLRs (2, 3, 4, 7, 8, 9) expression in monocytes and dendritic cells (DCs - total, myeloid, plasmacytoid) was quantitated using flow cytometry. Gene expression of RLRs (RIG-1, MDA-5) was evaluated using real-time PCR. Concomitant signaling molecules expression, plasma cytokine/chemokine concentrations, and respiratory tract viral loads were measured. PBMCs were cultured and stimulated ex vivo with TLR-specific ligands for cytokine responses. RESULTS: Forty two patients with influenza (24 A/H3N2, 18 A/H1N1pdm09) and 20 controls were studied. Patients' mean age was 68 ± 16 years; 81% had respiratory/cardiovascular complications. There were increased cellular expressions of TLR9, TLR8, TLR3, and TLR7 during influenza; TLR2 and TLR4 were suppressed. Results were similar for both virus strains. Higher TLR expression levels at presentation significantly correlated with lower viral loads (Spearman's rho: -0.46 to -0.69 for TLR9, TLR8, and TLR3; P-values <0.05). Multivariate regression models (adjusted for age, comorbidity, disease severity, time from onset) confirmed their independent associations. Increased signaling molecules (phospho-MAPKs, IκB) and inflammatory cytokines (IL-6, sTNFR-1, CCL2/MCP-1; CXCL10/IP-10, IFN-γ) correlated with increased TLR expression. RLRs were upregulated simultaneously. PBMCs of patients with influenza showed significant, dynamic changes in their cytokine responses upon TLR stimulation, compared with controls. CONCLUSIONS: Our results suggest that TLRs play an important role in early, innate viral inhibition in naturally occurring influenza. Inflammatory cytokine responses are concomitantly induced. These findings support investigation of TLR targeting as a novel intervention approach for prophylaxis against influenza.


Subject(s)
Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza, Human/immunology , Toll-Like Receptors/immunology , Adult , Aged , Case-Control Studies , Cytokines/genetics , Cytokines/immunology , Dendritic Cells/immunology , Female , Hospitalization , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/genetics , Influenza, Human/virology , Male , Middle Aged , Prospective Studies , Toll-Like Receptors/genetics
4.
Cell Mol Immunol ; 10(4): 317-29, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23524653

ABSTRACT

Key intracytosolic pattern recognition receptors of innate immunity against bacterial infections are nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs). We elucidated the NOD1 and NOD2-mediated activation of human eosinophils, the principal effector cells for allergic inflammation, upon interacting with human bronchial epithelial BEAS-2B cells in allergic asthma. Eosinophils constitutively expressed NOD1,2 but exhibited nonsignificant responses to release chemokines upon the stimulation by NOD1 ligand γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) and NOD2 ligand muramyl dipeptide (MDP). However, iE-DAP and MDP could significantly upregulate cell surface expression of CD18 and intercellular adhesion molecule (ICAM)-1 on eosinophils and ICAM-1 on BEAS-2B cells, as well as induce chemokines CCL2 and CXCL8 release in the coculture system (all P<0.05). Both eosinophils and BEAS-2B cells were the main source for CXCL8 and CCL2 release in the coculture system upon iE-DAP or MDP stimulation. Direct interaction between eosinophils and BEAS-2B cells is responsible for CCL2 release, and soluble mediators are implicated in CXCL8 release. ERK and NF-κB play regulatory roles for the expression of adhesion molecules and chemokines in coculture. Treatment with NOD1,2 ligand could induce the subepithelial fibrosis and significantly enhance the serum concentration of total IgE, chemokine CCL5 for eosinophils and T helper type 2 (Th2) cells and asthma Th2 cytokine IL-13 in bronchoalveolar lavage fluid of ovalbumin-sensitized allergic asthmatic mice (all P<0.05). This study provides further evidence of bacterial infection-mediated activation of NOD1,2 in triggering allergic asthma via the activation of eosinophils interacting with bronchial epithelial cells at inflammatory airway.


Subject(s)
Asthma/immunology , Eosinophils/immunology , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Respiratory Mucosa/immunology , Acetylmuramyl-Alanyl-Isoglutamine/administration & dosage , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Animals , Bronchi/pathology , CD18 Antigens/genetics , CD18 Antigens/metabolism , Cell Communication , Cell Line , Chemokines/genetics , Chemokines/metabolism , Coculture Techniques , Diaminopimelic Acid/administration & dosage , Diaminopimelic Acid/analogs & derivatives , Diaminopimelic Acid/pharmacology , Eosinophils/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Immunity, Innate , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Interleukin-13/metabolism , Mice , NF-kappa B/metabolism , Nod1 Signaling Adaptor Protein/agonists , Nod1 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/agonists , Nod2 Signaling Adaptor Protein/genetics , Respiratory Mucosa/drug effects , Respiratory Mucosa/pathology , Th2 Cells/drug effects , Th2 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...