Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38005453

ABSTRACT

This paper presents an interval type-2 fuzzy proportional-integral-derivative (IT2F-PID) controller that is designed using a new disassembled gradational optimization (D-GO) method. A PID controller is first optimized using the D-GO method and then connected to a type-1 fuzzy logic system (T1-FLS). The parameters of the T1-FLS are optimized, and the T1-FLS is blurred into the interval type-2 fuzzy logic system (IT2-FLS). Finally, the IT2F-PID controller is formed. The proposed method is compared with the concurrent and general optimization methods. The simulation results show that the D-GO method reduces the optimization time by over 90% compared with the general method, and decreases the integral-of-time-absolute-error (ITAE) by 30%. Beyond that, compared with the concurrent optimization method, the D-GO method reduces time by over 25%, and the ITAE value by about 95%. In the normal case, model uncertainty, target uncertainty, and external disturbance, the control ability of the IT2F-PID controller designed using the D-GO method is verified via simulations using a nonlinear forced closed-loop system. The results show that the overshoot is reduced by 80% and the fluctuation is reduced by 67% compared with a traditional PID controller and an IT2F-PID controller built using the general method.

2.
Biomimetics (Basel) ; 8(5)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37754138

ABSTRACT

The electric eel has an organ made up of hundreds of electrocytes, which is called the electric organ. This organ is used to sense and detect weak electric field signals. By sensing electric field signals, the electric eel can identify changes in their surroundings, detect potential prey or other electric eels, and use it for navigation and orientation. Path-finding algorithms are currently facing optimality challenges such as the shortest path, shortest time, and minimum memory overhead. In order to improve the search performance of a traditional A* algorithm, this paper proposes a bidirectional jump point search algorithm (BJPS+) based on the electricity-guided navigation behavior of electric eels and map preprocessing. Firstly, a heuristic strategy based on the electrically induced navigation behavior of electric eels is proposed to speed up the node search. Secondly, an improved jump point search strategy is proposed to reduce the complexity of jump point screening. Then, a new map preprocessing strategy is proposed to construct the relationship between map nodes. Finally, path planning is performed based on the processed map information. In addition, a rewiring strategy is proposed to reduce the number of path inflection points and path length. The simulation results show that the proposed BJPS+ algorithm can generate optimal paths quickly and with less search time when the map is known.

SELECTION OF CITATIONS
SEARCH DETAIL
...