Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Int J Biol Macromol ; 233: 123223, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36639070

ABSTRACT

Tailoring magnetic nanocarriers with tunable properties is of great significance for the development of multifunctional candidate materials in numerous fields. Herein, we report a one-pot biomimetic silicification-based method for the synthesis of silica-coated magnetic nanoparticles. The synthesis process was mild, low cost, and highly efficient, which took only about 21 min compared with 4.5-120 h in other literature. Then, the carriers had been characterized by VSM, SEM, TEM, XRD, FT-IR, and EDS to confirm their function. To evaluate the usefulness of the carriers, they were adopted to couple the purification and immobilization of ß-1,3-xylanase from the cell lysate in a single step with high immobilization yield (92.8 %) and high activity recovery (82.4 %). The immobilized enzyme also retained 58.4 % of the initial activity after 10 cycles and displayed good storage properties, and improved thermal stability, which would be promising in algae biomass bioconversion as well as other diverse applications.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Silicon Dioxide , Spectroscopy, Fourier Transform Infrared , Enzymes, Immobilized/metabolism , Magnetic Phenomena , Enzyme Stability , Hydrogen-Ion Concentration , Temperature
2.
Front Nutr ; 9: 970540, 2022.
Article in English | MEDLINE | ID: mdl-36337671

ABSTRACT

Enzyme-assisted valorization of lichenan represents a green and sustainable alternative to the conventional chemical industry. The recently discovered lytic polysaccharide monooxygenases (LPMOs) are essential components of state-of-the-art enzyme cocktails for lichenin bioconversion. The LPMOs named SpyTag fused LPMOs (AST) from Chaetomium globosum was functionally expressed in E. coli and exhibited 1.25-fold synergism with lichenase, whereas AST alone produced no detectable reducing sugars. HPLC results further confirm that AST does not alter the endogenous hydrolysis mode of lichenase but rather enhances its hydrolysis efficiency by disrupting the long chain of lichenan and releasing more reducing ends. To the best of our knowledge, this was the first report on the synergistic effect of LPMOs and lichenase, which may have great synergistic potential in the conversion of lichen biomass. Furthermore, a novel strategy for the covalently immobilizing AST and lichenase on silica nanoparticles (SNPs) from the cell lysate in a single step was proposed, which exhibited high activity recovery (82.9%) and high immobilization yield (94.8%). After 12 independent runs, about 67.4 % of the initial activity of the immobilized enzymes was retained. The resulted biocatalyst systems exhibited the green and sustainable strategy in the bioconversion of lichen biomass as well as other diverse polysaccharides.

3.
PeerJ ; 10: e13404, 2022.
Article in English | MEDLINE | ID: mdl-35698617

ABSTRACT

Bacteriophages (phages) are the most abundant and diverse biological entity on Earth. Due to the lack of universal gene markers and database representatives, there about 50-90% of genes of phages are unable to assign functions. This makes it a challenge to identify phage genomes and annotate functions of phage genes efficiently by homology search on a large scale, especially for newly phages. Portal (portal protein), TerL (large terminase subunit protein), and TerS (small terminase subunit protein) are three specific proteins of Caudovirales phage. Here, we developed a CNN (convolutional neural network)-based framework, DeephageTP, to identify the three specific proteins from metagenomic data. The framework takes one-hot encoding data of original protein sequences as the input and automatically extracts predictive features in the process of modeling. To overcome the false positive problem, a cutoff-loss-value strategy is introduced based on the distributions of the loss values of protein sequences within the same category. The proposed model with a set of cutoff-loss-values demonstrates high performance in terms of Precision in identifying TerL and Portal sequences (94% and 90%, respectively) from the mimic metagenomic dataset. Finally, we tested the efficacy of the framework using three real metagenomic datasets, and the results shown that compared to the conventional alignment-based methods, our proposed framework had a particular advantage in identifying the novel phage-specific protein sequences of portal and TerL with remote homology to their counterparts in the training datasets. In summary, our study for the first time develops a CNN-based framework for identifying the phage-specific protein sequences with high complexity and low conservation, and this framework will help us find novel phages in metagenomic sequencing data. The DeephageTP is available at https://github.com/chuym726/DeephageTP.


Subject(s)
Bacteriophages , Bacteriophages/genetics , Neural Networks, Computer , Amino Acid Sequence , Metagenome , Metagenomics/methods
4.
AMB Express ; 12(1): 50, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35524019

ABSTRACT

Agarase is a natural catalyst with a good prospect in the industry. However, most of the currently discovered ß-agarases are unsuitable for relatively high-temperature and high-pressure conditions required by industrial production. In this study, molecular dynamics simulations were first used to investigate the dynamic changes of folding and unfolding of mesophile and thermophile ß-agarases (i.e., 1URX and 3WZ1) to explore the thermostability mechanism at three high temperatures (300 K, 400 K, and 500 K). Results showed that the sequence identity of 3WZ1 and 1URX reaches 48.8%. 1URX has a higher thermal sensitivity and less thermostability than 3WZ1 as more thermostable regions and hydrogen bonds exist in 3WZ1 compared with 1URX. The structures of 1URX and 3WZ1 become unstable with increasing temperatures up to 500 K. The strategies to increase the thermostability of 1URX and 3WZ1 are discussed. This study could provide insights into the design and modification of ß-agarases at a high temperature.

5.
Environ Res ; 210: 112901, 2022 07.
Article in English | MEDLINE | ID: mdl-35227678

ABSTRACT

As the most numerous biological entities on Earth, viruses affect the microbial dynamics, metabolism and biogeochemical cycles in the aquatic ecosystems. Viral diversity and functions in ocean have been relatively well studied, but our understanding of viruses in mariculture systems is limited. To fill this knowledge gap, we studied viral diversity and potential biogeochemical impacts of sediments from four different prawn-mariculture ecosystems (mono-culture of prawn and poly-culture of prawn with jellyfish, sea cucumber, and clam) using a metagenomic approach with prior virus-like particles (VLPs) separation. We found that the order Caudovirales was the predominant viral category and accounted for the most volume (78.39% of classified viruses). Sediment viruses were verified to have a high diversity by using the construct phylogenetic tree of terL gene, with three potential novel clades being identified. Meanwhile, compared with viruses inhabiting other ecosystems based on gene-sharing network, our results revealed that mariculture sediments harbored considerable unexplored viral diversity and that maricultural species were potentially important drivers of the viral community structure. Notably, viral auxiliary metabolic genes were identified and suggested that viruses influence carbon and sulfur cycling, as well as cofactors/vitamins and amino acid metabolism, which indirectly participate in biogeochemical cycling. Overall, our findings revealed the genomic diversity and ecological function of viral communities in prawn mariculture sediments, and suggested the role of viruses in microbial ecology and biogeochemistry.


Subject(s)
Metagenome , Viruses , Ecosystem , Geologic Sediments , Metagenomics , Phylogeny , Viruses/genetics
6.
Bio Protoc ; 12(1): e4282, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35118174

ABSTRACT

Many of the current methods for enzyme purification and immobilization suffer from several drawbacks, such as requiring tedious multistep procedures or long preparation, and being environmentally unfriendly, due to the chemicals and conditions involved. Thus, a simple technique for direct purification and immobilization of target enzymes from cell lysates was proposed. The elastin-like polypeptides (ELPs)-SpyCatcher chimera could mediate the formation of silica carriers within seconds and the target enzymes were then covalently immobilized on silica carriers via SpyCatcher/SpyTag spontaneous reaction. These tailor-made carriers were easily prepared, with precisely controlled morphology and size, as well as none-consuming surface modification needed, which could specifically immobilize the SpyTag-fused target enzymes from the cell lysate without pre-purification.

7.
Imeta ; 1(2): e20, 2022 Jun.
Article in English | MEDLINE | ID: mdl-38868565

ABSTRACT

The identification of microbial markers adequate to delineate the disease-related microbiome alterations from the complex human gut microbiota is of great interest. Here, we develop a framework combining neural network (NN) and random forest, resulting in 40 marker species and 90 marker genes identified from the metagenomic data set (185 healthy and 183 type 2 diabetes [T2D] samples), respectively. In terms of these markers, the NN model obtained higher accuracy in classifying the T2D-related samples than other methods; the interaction network analyses identified the key species and functional modules; the regression analysis determined that fasting blood glucose is the most significant factor (p < 0.05) in the T2D-related alteration of the human gut microbiome. We also observed that those marker species varied little across the case and control samples greatly shift in the different stages of the T2D development, suggestive of their important roles in the T2D-related microbiome alteration. Our study provides a new way of identifying the disease-related biomarkers and analyzing the role they may play in the development of the disease.

8.
Sheng Wu Gong Cheng Xue Bao ; 35(1): 1-12, 2019 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-30756530

ABSTRACT

The increasing atmospheric carbon dioxide levels have been correlated with global warming. Carbonic anhydrases (CA) are the fastest among the known enzymes to improve carbon capture. The capture of carbon dioxide needs high temperature and alkaline condition, which is necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential, and polyextremophilic microbes are one of the important sources of these enzymes. The current review focuses on both those isolated by thermophilic organisms from the extreme environments and those obtained by protein engineering techniques, and the industrial application of the immobilized CAs is also briefly addressed. To reduce the greenhouse effect and delay global warming, we think further research efforts should be devoted to broadening the scope of searching for carbonic anhydrase, modifying the technology of protein engineering and developing highly efficient immobilization strategies.


Subject(s)
Biomimetics , Carbon Dioxide , Carbon Sequestration , Carbonic Anhydrases , Protein Engineering
9.
J Exp Biol ; 220(Pt 11): 2066-2075, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28566358

ABSTRACT

Snails of the genus Echinolittorina are among the most heat-tolerant animals; they experience average body temperatures near 41-44°C in summer and withstand temperatures up to at least 55°C. Here, we demonstrate that heat stability of function (indexed by the Michaelis-Menten constant of the cofactor NADH, KMNADH) and structure (indexed by rate of denaturation) of cytosolic malate dehydrogenases (cMDHs) of two congeners (E. malaccana and E. radiata) exceeds values previously found for orthologs of this protein from less thermophilic species. The ortholog of E. malaccana is more heat stable than that of E. radiata, in keeping with the congeners' thermal environments. Only two inter-congener differences in amino acid sequence in these 332 residue proteins were identified. In both cases (positions 48 and 114), a glycine in the E. malaccana ortholog is replaced by a serine in the E. radiata protein. To explore the relationship between structure and function and to characterize how amino acid substitutions alter stability of different regions of the enzyme, we used molecular dynamics simulation methods. These computational methods allow determination of thermal effects on fine-scale movements of protein components, for example, by estimating the root mean square deviation in atom position over time and the root mean square fluctuation for individual residues. The minor changes in amino acid sequence favor temperature-adaptive change in flexibility of regions in and around the active sites. Interspecific differences in effects of temperature on fine-scale protein movements are consistent with the differences in thermal effects on binding and rates of heat denaturation.


Subject(s)
Body Temperature , Malate Dehydrogenase/chemistry , Snails/enzymology , Adaptation, Biological , Amino Acid Sequence , Amino Acid Substitution , Animals , Cytosol/enzymology , Enzyme Stability , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Molecular Dynamics Simulation , Protein Denaturation , Snails/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...