Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(24): 43579-43589, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36523053

ABSTRACT

Multi-resonance light coupling management is a promising way to expand the operating spectral ranges of optoelectronic devices. The classical strategies are either lack of independent tunability for each resonance or involved with complex fabrication. Here, we propose a new scheme for expanding the operating spectral range of an optoelectronic device through a dual-color active material integrated with a simple resonant waveguide structure. The TM waveguide mode and the SPP mode of the resonant waveguide structure are regulated to match the two active regions of the dual-color material both spectrally and spatially. Applying this scheme to a long-wavelength infrared quantum well photodetector, the absorption efficiencies at the two peak detection wavelengths of the dual-color quantum wells are both enhanced by more than 10 times compared with the case of a standard 45° edge facet coupled device with the same detection material. The simple light coupling structure is easy to accomplish and compatible with focal plane arrays. For thermal radiation detection, the absorption efficiency of the 300 K blackbody radiation by our dual-color detector is 83.8% higher than that by a single-color detector with the optimized structural parameters. Moreover, either polarization sensitive or polarization insensitive detection could be achieved in this dual-color infrared quantum well photodetector by using anisotropic or isotropic gratings.

2.
Sensors (Basel) ; 23(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36616770

ABSTRACT

Circular polarization detection enables a wide range of applications. With the miniaturization of optoelectronic systems, integrated circular polarization detectors with native sensitivity to the spin state of light have become highly sought after. The key issues with this type of device are its low circular polarization extinction ratios (CPERs) and reduced responsivities. Metallic two-dimensional chiral metamaterials have been integrated with detection materials for filterless circular polarization detection. However, the CPERs of such devices are typically below five, and the light absorption in the detection materials is hardly enhanced and is even sometimes reduced. Here, we propose to sandwich multiple quantum wells between a dielectric two-dimensional chiral metamaterial and a metal grating to obtain both a high CPER and a photoresponse enhancement. The dielectric-metal-hybrid chiral metamirror integrated quantum well infrared photodetector (QWIP) exhibits a CPER as high as 100 in the long wave infrared range, exceeding all reported CPERs for integrated circular polarization detectors. The absorption efficiency of this device reaches 54%, which is 17 times higher than that of a standard 45° edge facet coupled device. The circular polarization discrimination is attributed to the interference between the principle-polarization radiation and the cross-polarization radiation of the chiral structure during multiple reflections and the structure-material double polarization selection. The enhanced absorption efficiency is due to the excitation of a surface plasmon polariton wave. The dielectric-metal-hybrid chiral mirror structure is compatible with QWIP focal plane arrays.

3.
Sensors (Basel) ; 21(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34372458

ABSTRACT

Single-wall carbon nanotube (SWCNT) thin films are promising for sensitive uncooled infrared detection based on the photothermoelectric effect. The SWCNT film is usually shaped into a belt and diversely doped to form a p-n junction at the center. Under the illumination of a focused incident light, the temperature gradient from the junction to the contacts leads to photoresponse. When the SWCNTs are aligned in one direction, the photoresponse becomes polarization selective. Although a typical bowtie antenna can improve the responsivity and polarization extinction ratio by deep-subwavelength light focusing, the absolute absorptance of the junction region is only 0.6%. In this work, the antenna was engineered for a higher light coupling efficiency. By integrating a bottom metal plane at a specific distance from the SWCNT film and optimizing the antenna geometries, we achieved ultra-efficient impedance matching between the antenna and the SWCNTs, thus the absorptance of the junction region was further enhanced by 21.3 times and reached 13.5%, which is more than 3 orders of magnitude higher than that of the device without the engineered antenna. The peak responsivity was further enhanced by 19.9 times and responsivity reached 1500 V/W at 1 THz. The resonant frequency can be tuned by changing the size of the antenna. Over the frequency range of 0.5 THz to 1.5 THz, the peak responsivity was further enhanced by 8.1 to 19.9 times, and the polarization extinction ratio was enhanced by 2.7 to 22.3 times. The highest polarization extinction ratio reached 3.04 × 105 at 0.5 THz. The results are based on the numerical simulations of the light and the thermal fields.

4.
Opt Lett ; 46(9): 2236-2239, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33929463

ABSTRACT

Dynamically tunable ultra-narrowband perfect absorbers are important to next-generation active photonic devices. A composite structure of a graphene pair and a microcavity with Bragg mirrors are proposed for this purpose. Based on the electrically controllable doping of graphene and critical coupling of the incident light, the microcavity-graphene composite structure achieves peak absorptance higher than 99.5%, a relative peak width ($\Delta \lambda /{\lambda _0}$) smaller than 1.1%, and a modulation depth larger than 92.0% throughout the visible-to-mid-infrared range, surpassing other structures in comprehensive performance. By changing the number of the dielectric pairs in the Bragg mirrors, the device can become an amplitude or a spectral modulator. The results are based on the optical constants from experiment data, including the surface conductivity of graphene with relatively low mobility, so they are more useful in practical situations.

5.
Opt Express ; 28(11): 16427-16438, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32549466

ABSTRACT

The light coupling properties of all-semiconductor plasmonic cavity integrated THz quantum well infrared photodetectors were studied for absorption enhancement of the quantum wells. The all-semiconductor plasmonic cavity is constructed by heavily doped GaAs with a plasmonic behavior in the THz regime. The plasmonic behavior of GaAs was thoroughly studied by taking into account the carrier density dependent effective mass of electrons. An optimal doping level for GaAs to be the most metallic is selected since the plasma frequency of the doped GaAs varies nonmonotonically with the carrier density. By tuning the absorption competition between the quantum wells and the doped GaAs meanwhile keeping the system at a critical coupling status, the absorptance of the quantum wells is prominently enhanced by 13.2 times compared to that in a standard device. The all-semiconductor plasmonic cavity integrated quantum well photodetectors can be polarization sensitive (polarization extinction ratio > 900) when the plasmonic cavity is shaped into an anisotropic form. The good tolerance of the incident angle is favored for wide-field infrared detection. The GaAs plasmonic cavities are demonstrated to be effective when integrated at a pixel level, indicating a good compatibility with focal plane arrays.

6.
Sci Rep ; 10(1): 6372, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32286355

ABSTRACT

Polarization-independent dielectric meta-lens is proposed to monolithically integrate with a HgCdTe infrared photodetector to concentrate power flux into a reduced photosensitive area for performance enhancement. Although a reduction in photosensitive area could suppress the dark current, the more seriously reduced light absorptance would degrade the specific detectivity D*. The integration of the meta-lens could reverse the situation by improving the absorptance of the photosensitive region. The meta-lens composed of an array of nano-pillars with varying diameters is formed by carving the CdZnTe substrate of the HgCdTe detector so that the integration could be accomplished in situ. The meta-lens focuses the incident light through the CdZnTe medium and at the HgCdTe photosensitive region. The focal spot is about the wavelength size and the focusing efficiency is above 63%. Concerning a HgCdTe detector with a pitch size of 40 µm × 40 µm, when the photosensitive area is reduced to 5 µm × 5 µm, the meta-lens could still keep the light absorptance above 50%, which is 49 times higher than that of the device without the meta-lens. The dark current reduces with the decreasing photosensitive area in a linear manner. When the photosensitive area shrinks from 40 µm × 40 µm to 10 µm × 10 µm or 5 µm × 5 µm, the dark current reduces by 16 or even 64 times. Compared to the pristine device, the employment of the meta-lens together with the reduction in photosensitive area could enhance D* by 5.5 times for the photosensitive area as 5 µm × 5 µm. Further, the meta-lens exhibits a good dispersion tolerance over the wavelength range from 3.3 µm to 5 µm. The averaged detectivity enhancement over this spectrum range is around 3 times for the photosensitive area as 5 µm × 5 µm. The angular response of the meta-lens integrated detector depends on the focal length. For a focal length of 73 µm or 38 µm, the angle of view for a 5 µm × 5 µm photosensitive area is 4.0° or 7.7°. For the inter-pillar distance to be 2 µm in our design, the influence of the coupling effect between the nano-pillars on the performance of the meta-lens is little.

SELECTION OF CITATIONS
SEARCH DETAIL
...