Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biochem Biophys Res Commun ; 721: 150128, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38776831

ABSTRACT

PURPOSE: Chronic stress is a significant risk factor for mood disorders such as depression, where synaptic plasticity plays a central role in pathogenesis. Transient Receptor Potential Vanilloid Type-2 (TRPV2) Ion Channels are implicated in hypothalamic-pituitary-adrenal axis disorders. Previous proteomic analysis indicated a reduction in TRPV2 levels in the chronic unpredictable mild stress (CUMS) rat model, yet its role in synaptic plasticity during depression remains to be elucidated. This study aims to investigate TRPV2's role in depression and its underlying mechanisms. METHODS: In vivo and in vitro experiments were conducted using the TRPV2-specific agonist probenecid and ERK1/2 inhibitors SCH772984. In vivo, rats underwent six weeks of CUMS before probenecid administration. Depressive-like behaviors were assessed through behavioral tests. ELISA kits measured 5-HT, DA, NE levels in rat hippocampal tissues. Hippocampal morphology was examined via Nissl staining. In vitro, rat hippocampal neuron cell lines were treated with ERK1/2 inhibitors SCH772984 and probenecid. Western blot, immunofluorescence, immunohistochemical staining, and RT-qPCR assessed TRPV2 expression, neurogenesis-related proteins, synaptic markers, and ERK1/2-CREB-BDNF signaling proteins. RESULTS: Decreased hippocampal TRPV2 levels were observed in CUMS rats. Probenecid treatment mitigated depressive-like behavior and enhanced hippocampal 5-HT, NE, and DA levels in CUMS rats. TRPV2 activation countered CUMS-induced synaptic plasticity inhibition. Probenecid activated the ERK1/2-CREB-BDNF pathway, suggesting TRPV2's involvement in this pathway via ERK1/2. CONCLUSION: These findings indicate that TRPV2 activation offers protective effects against depressive-like behaviors and enhances hippocampal synaptic plasticity in CUMS rats via the ERK1/2-CREB-BDNF pathway. TRPV2 emerges as a potential therapeutic target for depression.


Subject(s)
Brain-Derived Neurotrophic Factor , Cyclic AMP Response Element-Binding Protein , Hippocampus , MAP Kinase Signaling System , Neuronal Plasticity , Rats, Sprague-Dawley , Stress, Psychological , TRPV Cation Channels , Animals , TRPV Cation Channels/metabolism , TRPV Cation Channels/antagonists & inhibitors , Neuronal Plasticity/drug effects , Male , Brain-Derived Neurotrophic Factor/metabolism , Stress, Psychological/complications , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Hippocampus/metabolism , Hippocampus/drug effects , Rats , MAP Kinase Signaling System/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Depression/metabolism , Depression/drug therapy , Chronic Disease , Probenecid/pharmacology
2.
Front Med (Lausanne) ; 10: 1219830, 2023.
Article in English | MEDLINE | ID: mdl-37465641

ABSTRACT

Introduction: Osteoarthritis (OA) refers to a commonly seen degenerative joint disorder and a major global public health burden. According to the existing literature, osteoarthritis is related to epigenetic changes, which are important for diagnosing and treating the disease early. Through early targeted treatment, costly treatments and poor prognosis caused by advanced osteoarthritis can be avoided. Methods: This study combined gene differential expression analysis and weighted gene co-expression network analysis (WGCNA) of the transcriptome with epigenome microarray data to discover the hub gene of OA. We obtained 2 microarray datasets (GSE114007, GSE73626) in Gene Expression Omnibus (GEO). The R software was utilized for identifying differentially expressed genes (DEGs) and differentially methylated genes (DMGs). By using WGCNA to analyze the relationships between modules and phenotypes, it was discovered that the blue module (MEBlue) has the strongest phenotypic connection with OA (cor = 0.92, p = 4e-16). The hub genes for OA, also known as the hub methylated differentially expressed genes, were identified by matching the MEblue module to differentially methylated differentially expressed genes. Furthermore, this study used Gene set variation analysis (GSVA) to identify specific signal pathways associated with hub genes. qRT-PCR and western blotting assays were used to confirm the expression levels of the hub genes in OA patients and healthy controls. Results: Three hub genes were discovered: HTRA1, P2RY6, and RCAN1. GSVA analysis showed that high HTRA1 expression was mainly enriched in epithelial-mesenchymal transition and apical junction; high expression of P2RY6 was mainly enriched in the peroxisome, coagulation, and epithelial-mesenchymal transition; and high expression of RCAN1 was mainly enriched in epithelial-mesenchymal-transition, TGF-ß-signaling, and glycolysis. The results of the RT-qPCR and WB assay were consistent with the findings. Discussion: The three genes tested may cause articular cartilage degeneration by inducing chondrocyte hypertrophy, regulating extracellular matrix accumulation, and improving macrophage pro-inflammatory response, resulting in the onset and progression of osteoarthritis. They can provide new ideas for targeted treatment of osteoarthritis.

4.
Neurochem Res ; 48(6): 1737-1754, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36670238

ABSTRACT

Major depressive disorder (MDD) refers to a widespread psychiatric disorder. Astrocytes play a pivotal role in regulating inflammation which is a well-acknowledged key component in depression pathogenesis. However, the effects of the neuroinflammation-inducing A1-like astrocytes on MDD are still unknown. TWIK-related K+ channel 1 (TREK-1) has been demonstrated to regulate the action of antidepressants. Nevertheless, its mechanisms and effects on A1-like astrocyte stimulation in MDD are not clear. Therefore, we conducted in vivo and in vitro experiments using TREK-1 specific inhibitor spadin. In vivo, rats were subjected to a 6-week chronic unpredictable mild stress (CUMS) followed by spadin treatment. Behavioral tests were employed to surveil depressive-like behaviors. Hippocampal proteomic analysis was carried out with the purpose of identifying differentially expressed proteins after CUMS and spadin treatments. In vitro, astrocyte-conditioned medium and spadin were used to treat rat astrocyte cell line. The activated microglia, inflammatory factors, A1 astrocyte markers, and activated nuclear factor kappa B (NF-κB) pathway were later analyzed using immunofluorescence, western blot, and RT-qPCR. Our findings indicated that blockage of TREK-1 reduced CUMS-induced depressive-like behavior in rats, inhibited the microglial stimulation, reduced inflammatory factor levels, and suppressed the activation of A1-like reactive astrocytes in the hippocampus. We also verified that the suppression of A1-like astrocytes by spadin necessitated the NF-κB pathway. According to the findings, blocking TREK-1 inhibited the activation of A1-like reactive astrocytes via the NF-κB signaling pathway in MDD. Our study preliminarily identifies a novel antidepressant mechanism of TREK-1 action and provides a therapeutic path for MDD.


Subject(s)
Depressive Disorder, Major , Potassium Channels, Tandem Pore Domain , Rats , Animals , Depressive Disorder, Major/drug therapy , NF-kappa B/metabolism , Astrocytes/metabolism , Potassium/metabolism , Proteomics , Potassium Channels, Tandem Pore Domain/metabolism , Signal Transduction , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Depression/etiology , Stress, Psychological/metabolism , Hippocampus/metabolism
5.
Front Bioeng Biotechnol ; 10: 1047902, 2022.
Article in English | MEDLINE | ID: mdl-36394019

ABSTRACT

Purpose: To compare biomechanical and clinical properties of the novel internal fixation Interlocking Hip Screw (IHS) and conventional inverted triangle cannulated screws (ITCS) for treatment of Pauwels Ⅲ femoral neck fractures. Methods: Twenty synthetic femurs were osteotomized to simulate 70° Pauwels Ⅲ femoral neck fractures and randomly divided into two groups: Group IHS and Group ITCS. Specimens were loaded in quasi-static ramped and cyclical compression testing in 25° adduction to analyze for axial stiffness, failure load, and interfragmentary displacement. 21 matched patients with Pauwels Ⅲ femoral neck fracture who received closed reduction and internal fixation from January 2020 to January 2021 in both Group IHS and Group ITCS. Demographic data, time to surgery, operating duration, intraoperative blood loss, number of fluoroscopies, length of hospital stay, fracture healing time, Harris Hip Score (HHS), the score of Visual Analogue Scale (VAS) and complications such as nonunion, avascular necrosis, and femoral neck shortening were compared. Results: All specimens in the two groups survived in the axial and cyclical compression test. The axial stiffness was significantly higher for Group IHS (277.80 ± 26.58 N/mm) versus Group ITCS (205.33 ± 10.46 N/mm), p < 0.05. The maximum failure loading in Group IHS performed significantly higher than in Group ITCS (1,400.48 ± 71.60 N versus 996.76 ± 49.73 N, p < 0.05). The interfragmentary displacement of the cyclic loading test for Groups IHS and Group ITCS was 1.15 ± 0.11 mm and 1.89 ± 0.14 mm, respectively, p < 0.05. No significant difference was found in terms of demographic data, time to surgery, intraoperative blood loss, length of hospital stay and the occurrence of nonunion and avascular necrosis between groups. Shorter operating duration and fewer intraoperative fluoroscopic views were noticed using IHS compare to ITCS, p < 0.05. The HHS was 72.14 ± 5.76 and 86.62 ± 5.01 in Group IHS, and was 67.29 ± 5.27 and 81.76 ± 5.13 in Group ITCS at 3-month and 6-month follow-up, respectively, p < 0.05. The magnitude of femoral neck shortening was significantly lower in Group IHS compared to Group ITCS (4.80 ± 1.03 mm versus 5.56 ± 1.21 mm, p < 0.05). Conclusion: Our study demonstrated that IHS provided better biomechanical and clinical performance due to its unique biological and biomechanical mechanisms, compared with ITCS. Thus, IHS is a feasible alternative to ITCS for the fixation of Pauwels Ⅲ femoral neck fractures.

SELECTION OF CITATIONS
SEARCH DETAIL
...