Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(26): 14557-14569, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957088

ABSTRACT

This study aimed to investigate the mechanisms by which dark septate endophytes (DSE) regulate salt tolerance and the accumulation of bioactive constituents in licorice. First, the salt stress tolerance and resynthesis with the plant effect of isolated DSE from wild licorice were tested. Second, the performance of licorice inoculated with DSE, which had the best salt-tolerant and growth-promoting effects, was examined under salt stress. All isolated DSE showed salt tolerance and promoted plant growth, withCurvularia lunata D43 being the most effective. Under salt stress, C. lunata D43 could promote growth, increase antioxidant enzyme activities, enhance glycyrrhizic acid accumulation, improve key enzyme activities in the glycyrrhizic acid synthesis pathway, and induce the expression of the key enzyme gene and salt tolerance gene of licorice. The structural equation model demonstrated that DSE alleviate the negative effects of salt stress through direct and indirect pathways. Variations in key enzyme activities, gene expression, and bioactive constituent concentration can be attributed to the effects of DSE. These results contribute to revealing the value of DSE for cultivating medicinal plants in saline soils.


Subject(s)
Endophytes , Glycyrrhiza , Glycyrrhizic Acid , Salt Stress , Glycyrrhizic Acid/metabolism , Glycyrrhiza/chemistry , Glycyrrhiza/metabolism , Glycyrrhiza/microbiology , Endophytes/metabolism , Endophytes/genetics , Salt Tolerance , Ascomycota/metabolism , Ascomycota/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant
2.
J Hazard Mater ; 451: 131114, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36870129

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) play a significant role in pollutants removal in constructed wetlands (CWs). However, the purification effects of AMF on combined copper (Cu) and tetracycline (TC) pollution in CWs remains unknown. This study investigated the growth, physiological characteristics and AMF colonization of Canna indica L. living in vertical flow CWs (VFCWs) treated for Cu and/or TC pollution, the purification effects of AMF enhanced VFCWs on Cu and TC, and the microbial community structures. The results showed that (1) Cu and TC inhibited plant growth and decreased AMF colonization; (2) the removal rates of TC and Cu by VFCWs were 99.13-99.80% and 93.17-99.64%, respectively; (3) the growth, Cu and TC uptakes of C. indica and Cu removal rates were enhanced by AMF inoculation; (4) TC and Cu stresses reduced and AMF inoculation increased bacterial operational taxonomic units (OTUs) in the VFCWs, Proteobacteria, Bacteroidetes, Firmicutes and Acidobacteria were the dominant bacteria, and AMF inoculation decreased the relative abundance of Novosphingobium and Cupriavidus. Therefore, AMF could enhance the pollutants purification in VFCWs by promoting plant growth and altering the microbial community structures.


Subject(s)
Environmental Pollutants , Microbiota , Mycorrhizae , Copper/pharmacology , Tetracyclines , Wetlands , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Bacteria , Plant Roots
SELECTION OF CITATIONS
SEARCH DETAIL
...