Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Support Care Cancer ; 20(12): 3205-10, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22526145

ABSTRACT

The potential efficacy of a probiotic-based preventative strategy against intestinal mucositis has yet to be investigated in detail. We evaluated supernatants (SN) from Escherichia coli Nissle 1917 (EcN) and Lactobacillus rhamnosus GG (LGG) for their capacity to prevent 5-fluorouracil (5-FU)-induced damage to intestinal epithelial cells. A 5-day study was performed. IEC-6 cells were treated daily from days 0 to 3, with 1 mL of PBS (untreated control), de Man Rogosa Sharpe (MRS) broth, tryptone soy roth (TSB), LGG SN, or EcN SN. With the exception of the untreated control cells, all groups were treated with 5-FU (5 µM) for 24 h at day 3. Transepithelial electrical resistance (TEER) was determined on days 3, 4, and 5, while activation of caspases 3 and 7 was determined on days 4 and 5 to assess apoptosis. Pretreatment with LGG SN increased TEER (p < 0.05) compared to controls at day 3. 5-FU administration reduced TEER compared to untreated cells on days 4 and 5. Pretreatment with MRS, LGG SN, TSB, and EcN SN partially prevented the decrease in TEER induced by 5-FU on day 4, while EcN SN also improved TEER compared to its TSB vehicle control. These differences were also observed at day 5, along with significant improvements in TEER in cells treated with LGG and EcN SN compared to healthy controls. 5-FU increased caspase activity on days 4 and 5 compared to controls. At day 4, cells pretreated with MRS, TSB, LGG SN, or EcN SN all displayed reduced caspase activity compared to 5-FU controls, while both SN groups had significantly lower caspase activity than their respective vehicle controls. Caspase activity in cells pretreated with MRS, LGG SN, and EcN SN was also reduced at day 5, compared to 5-FU controls. We conclude that pretreatment with selected probiotic SN could prevent or inhibit enterocyte apoptosis and loss of intestinal barrier function induced by 5-FU, potentially forming the basis of a preventative treatment modality for mucositis.


Subject(s)
Antimetabolites, Antineoplastic/adverse effects , Apoptosis/physiology , Caspase 3/metabolism , Caspase 7/metabolism , Fluorouracil/adverse effects , Intestinal Diseases/prevention & control , Mucositis/prevention & control , Probiotics/therapeutic use , Animals , Cells, Cultured , Electric Impedance , Epithelial Cells/metabolism , Escherichia coli/metabolism , Intestinal Diseases/chemically induced , Intestinal Diseases/metabolism , Intestinal Mucosa/metabolism , Lacticaseibacillus rhamnosus/metabolism , Mucositis/chemically induced , Mucositis/metabolism , Probiotics/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...