Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Vaccines ; 9(1): 43, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396073

ABSTRACT

The advent of SARS-CoV-2 variants with defined mutations that augment pathogenicity and/or increase immune evasiveness continues to stimulate global efforts to improve vaccine formulation and efficacy. The extraordinary advantages of lipid nanoparticles (LNPs), including versatile design, scalability, and reproducibility, make them ideal candidates for developing next-generation mRNA vaccines against circulating SARS-CoV-2 variants. Here, we assess the efficacy of LNP-encapsulated mRNA booster vaccines encoding the spike protein of SARS-CoV-2 for variants of concern (Delta, Omicron) and using a predecessor (YN2016C isolated from bats) strain spike protein to elicit durable cross-protective neutralizing antibody responses. The mRNA-LNP vaccines have desirable physicochemical characteristics, such as small size (~78 nm), low polydispersity index (<0.13), and high encapsulation efficiency (>90%). We employ in vivo bioluminescence imaging to illustrate the capacity of our LNPs to induce robust mRNA expression in secondary lymphoid organs. In a BALB/c mouse model, a three-dose subcutaneous immunization of mRNA-LNPs vaccines achieved remarkably high levels of cross-neutralization against the Omicron B1.1.529 and BA.2 variants for extended periods of time (28 weeks) with good safety profiles for all constructs when used in a booster regime, including the YN2016C bat virus sequences. These findings have important implications for the design of mRNA-LNP vaccines that aim to trigger durable cross-protective immunity against the current and newly emerging variants.

2.
Biomacromolecules ; 24(12): 5551-5562, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37828909

ABSTRACT

Helicobacter pylori, the world's most common chronic infection-causing pathogen, is responsible for causing gastric ulcers, the fourth-leading cause of cancer-related death globally in 2020. In recent years, the effectiveness of the current treatment regimen (two antibiotics and one proton pump inhibitor) has often been plagued with problems such as resistance and the undesired elimination of commensal bacteria. Herein, we report the synthesis of block and random copolycarbonates, functionalized with cationic guanidinium and anionic acetate functional groups, aimed at selectively killing H. pylori in the acidic environment of the stomach, while remaining nontoxic to the commensal bacteria in the gut. The compositions of the polymers were fine-tuned so that the polymers were readily dispersed in water without any difficulty at both pH 3.0 and 7.4. The self-assembly behavior of the polymers at different pH values by dynamic light scattering showed that the random and block copolymers formed stable micelles in a simulated gastric environment (pH 3.0) while aggregated at pH 7.4. Both polymers demonstrated stronger antibacterial activity against H. pylori than the guanidinium-functionalized homopolymer without any acetate functional group at pH 3.0. The block copolymer was significantly more bactericidal at pH 3.0 across the concentrations tested, as compared to the random copolymer, while it did not show significant toxicity toward rat red blood cells (rRBCs) and HK-2 cells or bactericidal effect toward E. coli (a common gut bacterium) and nor caused aggregation of rRBCs at its effective concentration and at physiological pH of 7.4. Additionally, both the block and random copolymers were much more stable against hydrolysis at pH 3.0 than at pH 7.4. This study provides insight into the influence of both polymer architecture and dynamic assembly on the bioactivities of antimicrobial polymers, where the disassembly of coacervates into narrowly dispersed micelles at pH 3 make them potent antimicrobials aided by the protonated carboxylic acid block.


Subject(s)
Helicobacter pylori , Micelles , Rats , Animals , Guanidine/pharmacology , Escherichia coli , Polymers/pharmacology , Polymers/chemistry , Anti-Bacterial Agents/pharmacology , Hydrogen-Ion Concentration , Acetates
SELECTION OF CITATIONS
SEARCH DETAIL
...