Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ISME Commun ; 3(1): 55, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37280348

ABSTRACT

The Johor Strait separates the island of Singapore from Peninsular Malaysia. A 1-kilometer causeway built in the early 1920s in the middle of the strait effectively blocks water flowing to/from either side, resulting in low water turnover rates and build-up of nutrients in the inner Strait. We have previously shown that short-term rather than seasonal environmental changes influence microbial community composition in the Johor Strait. Here, we present a temporally-intensive study that uncovers the factors keeping the microbial populations in check. We sampled the surface water at four sites in the inner Eastern Johor Strait every other day for two months, while measuring various water quality parameters, and analysed 16S amplicon sequences and flow-cytometric counts. We discovered that microbial community succession revolves around a common stable state resulting from frequent pulse disturbances. Among these, sporadic riverine freshwater input and regular tidal currents influence bottom-up controls including the availability of the limiting nutrient nitrogen and its biological release in readily available forms. From the top-down, marine viruses and predatory bacteria limit the proliferation of microbes in the water. Harmful algal blooms, which have been observed historically in these waters, may occur only when there are simultaneous gaps in the top-down and bottom-up controls. This study gains insight into complex interactions between multiple factors contributing to a low-resistance but high-resilience microbial community and speculate about rare events that could lead to the occurrence of an algal bloom.

2.
Comput Struct Biotechnol J ; 18: 3788-3795, 2020.
Article in English | MEDLINE | ID: mdl-33304470

ABSTRACT

The fungi kingdom is composed of eukaryotic heterotrophs, which are responsible for balancing the ecosystem and play a major role as decomposers. They also produce a vast diversity of secondary metabolites, which have antibiotic or pharmacological properties. However, our lack of knowledge of gene function in fungi precludes us from tailoring them to our needs and tapping into their metabolic diversity. To help remedy this, we gathered genomic and gene expression data of 19 most widely-researched fungi to build an online tool, fungi.guru, which contains tools for cross-species identification of conserved pathways, functional gene modules, and gene families. We exemplify how our tool can elucidate the molecular function, biological process and cellular component of genes involved in various biological processes, by identifying a secondary metabolite pathway producing gliotoxin in Aspergillus fumigatus, the catabolic pathway of cellulose in Coprinopsis cinerea and the conserved DNA replication pathway in Fusarium graminearum and Pyricularia oryzae. The tool is available at www.fungi.guru.

SELECTION OF CITATIONS
SEARCH DETAIL
...