Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
PLoS Negl Trop Dis ; 17(6): e0011423, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37307291

ABSTRACT

BACKGROUND: Emerging arboviruses such as chikungunya and Zika viruses have unexpectedly caused widespread outbreaks in tropical and subtropical regions recently. Ross River virus (RRV) is endemic in Australia and has epidemic potential. In Malaysia, Aedes mosquitoes are abundant and drive dengue and chikungunya outbreaks. We assessed risk of an RRV outbreak in Kuala Lumpur, Malaysia by determining vector competence of local Aedes mosquitoes and local seroprevalence as a proxy of human population susceptibility. METHODOLOGY/PRINCIPAL FINDINGS: We assessed oral susceptibility of Malaysian Ae. aegypti and Ae. albopictus by real-time PCR to an Australian RRV strain SW2089. Replication kinetics in midgut, head and saliva were determined at 3 and 10 days post-infection (dpi). With a 3 log10 PFU/ml blood meal, infection rate was higher in Ae. albopictus (60%) than Ae. aegypti (15%; p<0.05). Despite similar infection rates at 5 and 7 log10 PFU/ml blood meals, Ae. albopictus had significantly higher viral loads and required a significantly lower median oral infectious dose (2.7 log10 PFU/ml) than Ae. aegypti (4.2 log10 PFU/ml). Ae. albopictus showed higher vector competence, with higher viral loads in heads and saliva, and higher transmission rate (RRV present in saliva) of 100% at 10 dpi, than Ae. aegypti (41%). Ae. aegypti demonstrated greater barriers at either midgut escape or salivary gland infection, and salivary gland escape. We then assessed seropositivity against RRV among 240 Kuala Lumpur inpatients using plaque reduction neutralization, and found a low rate of 0.8%. CONCLUSIONS/SIGNIFICANCE: Both Ae. aegypti and Ae. albopictus are susceptible to RRV, but Ae. albopictus displays greater vector competence. Extensive travel links with Australia, abundant Aedes vectors, and low population immunity places Kuala Lumpur, Malaysia at risk of an imported RRV outbreak. Surveillance and increased diagnostic awareness and capacity are imperative to prevent establishment of new arboviruses in Malaysia.


Subject(s)
Aedes , Arboviruses , Chikungunya Fever , Zika Virus Infection , Zika Virus , Animals , Humans , Ross River virus , Mosquito Vectors , Malaysia/epidemiology , Seroepidemiologic Studies , Australia/epidemiology
2.
J Gen Virol ; 104(4)2023 04.
Article in English | MEDLINE | ID: mdl-37043371

ABSTRACT

Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus, which causes epidemics of fever, joint pain and rash. There are three genotypes: West African, East/Central/South/Africa (ECSA) and Asian, with the latter two predominant globally. Genotype-specific differences in clinical presentations, virulence and immunopathology have been described. Macrophages are key cells in immune responses against CHIKV. Circulating blood monocytes enter tissue to differentiate into monocyte-derived macrophages (MDMs) in response to CHIKV infection at key replication sites such as lymphoid organs and joints. This study analyses differences in replication and induced immune mediators following infection of MDMs with Asian and ECSA CHIKV genotypes. Primary human MDMs were derived from residual blood donations. Replication of Asian (MY/06/37348) or ECSA (MY/08/065) genotype strains of CHIKV in MDMs was measured by plaque assay. Nineteen immune mediators were measured in infected cell supernatants using multiplexed immunoassay or ELISA. MY/08/065 showed significantly higher viral replication at 24 h post-infection (h p.i.) but induced significantly lower expression of proinflammatory cytokines (CCL-2, CCL-3, CCL-4, RANTES and CXCL-10) and the anti-inflammatory IL-1Ra compared to MY/06/37348. No differences were seen at later time points up to 72 h p.i. During early infection, MY/08/065 induced lower proinflammatory immune responses in MDMs. In vivo, this may lead to poorer initial control of viral infection, facilitating CHIKV replication and dissemination to other sites such as joints. This may explain the consistent past findings that the ECSA genotype is associated with greater viremia and severity of symptoms than the Asian genotype. Knowledge of CHIKV genotype-specific immunopathogenic mechanisms in human MDMs is important in understanding of clinical epidemiology, biomarkers and therapeutics in areas with co-circulation of different genotypes.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Humans , Chikungunya virus/genetics , Immunity, Innate , Macrophages , Virus Replication , Genotype
4.
Acta Trop ; 208: 105472, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32389451

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne flavivirus with global impact since 2015. Although ZIKV was first isolated from Aedes aegypti in Malaysia in 1965, not much is known about the competency of Malaysian Ae. aegypti to ZIKV. To date only 9 cases of ZIKV have been reported in Malaysia despite the abundance of mosquito vectors. This study aimed to determine the susceptibility of Ae. aegypti to ZIKV, and the impact of sequential infections in Ae. aegypti mosquitoes with DENV serotype 2 (DENV-2) followed by ZIKV. Field-caught urban Ae. aegypti were orally challenged with a Martinique strain of ZIKV, and midgut, head/thorax and saliva were collected at 3, 7 and 14 days post-infection (dpi). At 14 dpi, ZIKV-exposed mosquitoes had infection and dissemination rates of 59% (n=10/17) and 90% (n=9/10), respectively. Average titres of 3.9 and 4.4 log pfu infectious ZIKV were recovered in midgut and head/thorax, respectively. In sequential infection, prior exposure of Ae. aegypti to DENV did not affect the subsequent ZIKV infection in head/thorax albeit with a low sample size. In conclusion, Malaysian urban Ae. aegypti is susceptible to the contemporary Asian lineage of ZIKV. The established and continuous DENV circulation in Ae. aegypti did not suppress ZIKV emergence in Malaysia. Other factors contributing to low level of ZIKV circulation in Malaysia remain to be explored.

5.
J Gen Virol ; 100(11): 1541-1553, 2019 11.
Article in English | MEDLINE | ID: mdl-31613205

ABSTRACT

Chikungunya virus (CHIKV) has caused large-scale epidemics of fever, rash and arthritis since 2004. This unprecedented re-emergence has been associated with mutations in genes encoding structural envelope proteins, providing increased fitness in the secondary vector Aedes albopictus. In the 2008-2013 CHIKV outbreaks across Southeast Asia, an R82S mutation in non-structural protein 4 (nsP4) emerged early in Malaysia or Singapore and quickly became predominant. To determine whether this nsP4-R82S mutation provides a selective advantage in host cells, which may have contributed to the epidemic, the fitness of infectious clone-derived CHIKV with wild-type nsP4-82R and mutant nsP4-82S were compared in Ae. albopictus and human cell lines. Viral infectivity, dissemination and transmission in Ae. albopictus were not affected by the mutation when the two variants were tested separately. In competition, the nsP4-82R variant showed an advantage over nsP4-82S in dissemination to the salivary glands, but only in late infection (10 days). In human rhabdomyosarcoma (RD) and embryonic kidney (HEK-293T) cell lines coinfected at a 1 : 1 ratio, wild-type nsP4-82R virus was rapidly outcompeted by nsP4-82S virus as early as one passage (3 days). In conclusion, the nsP4-R82S mutation provides a greater selective advantage in human cells than in Ae. albopictus, which may explain its apparent natural selection during CHIKV spread in Southeast Asia. This is an unusual example of a naturally occurring mutation in a non-structural protein, which may have facilitated epidemic transmission of CHIKV.


Subject(s)
Chikungunya virus/growth & development , Genetic Fitness , Mutation, Missense , Viral Nonstructural Proteins/genetics , Virulence Factors/genetics , Aedes , Animals , Cell Line , Chikungunya virus/genetics , Humans , Mutant Proteins/genetics , Selection, Genetic
6.
Trans R Soc Trop Med Hyg ; 113(11): 678-684, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31294807

ABSTRACT

BACKGROUND: Zika virus (ZIKV) is believed to be endemic in Southeast Asia. However, there have been few Zika cases reported to date in Malaysia, which could be due to high pre-existing levels of population immunity. METHODS: To determine Zika virus (ZIKV) seroprevalence in Kuala Lumpur, Malaysia, 1085 serum samples from 2012, 2014-2015 and 2017 were screened for anti-ZIKV antibodies using a ZIKV NS1 blockade-of-binding assay. Reactive samples were confirmed using neutralization assays against ZIKV and the four dengue virus (DENV) serotypes. A sample was possible ZIKV seropositive with a ZIKV 50% neutralization (NT50) titre ≥20. A sample was probable ZIKV seropositive if, in addition, all DENV NT50 titres were <20 or the ZIKV NT50 titre was >4-fold greater than the highest DENV NT50 titre. RESULTS: We found low rates of possible ZIKV seropositivity (3.3% [95% confidence interval {CI} 2.4 to 4.6]) and probable ZIKV seropositivity (0.6% [95% CI 0.3 to 1.4]). Possible ZIKV seropositivity was independently associated with increasing age (odds ratio [OR] 1.04 [95% CI 1.02 to 1.06], p<0.0001) and male gender (OR 3.5 [95% CI 1.5 to 8.6], p=0.005). CONCLUSIONS: The low ZIKV seroprevalence rate, a proxy for population immunity, does not explain the low incidence of Zika in dengue-hyperendemic Kuala Lumpur. Other factors, such as the possible protective effects of pre-existing flavivirus antibodies or reduced transmission by local mosquito vectors, should be explored. Kuala Lumpur is at high risk of a large-scale Zika epidemic.


Subject(s)
Antibodies, Viral/blood , Dengue Virus/immunology , Dengue/epidemiology , Dengue/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Malaysia/epidemiology , Male , Middle Aged , Prevalence , Seroepidemiologic Studies , Young Adult
7.
Emerg Infect Dis ; 25(2): 374-376, 2019 02.
Article in English | MEDLINE | ID: mdl-30666941

ABSTRACT

We tested a sample of 234 wild long-tailed macaques (Macaca fascicularis) trapped in Peninsular Malaysia in 2009, 2010, and 2016 for Zika virus RNA and antibodies. None were positive for RNA, and only 1.3% were seropositive for neutralizing antibodies. Long-tailed macaques are unlikely to be reservoirs for Zika virus in Malaysia.


Subject(s)
Monkey Diseases/epidemiology , Monkey Diseases/virology , Zika Virus Infection/veterinary , Zika Virus , Animals , Animals, Wild , Macaca fascicularis , Malaysia/epidemiology , RNA, Viral , Serogroup , Zika Virus/classification , Zika Virus/genetics
8.
PLoS One ; 12(2): e0171989, 2017.
Article in English | MEDLINE | ID: mdl-28182795

ABSTRACT

The antibody isotype IgM appears earlier than IgG, within days of onset of symptoms, and is important during the early stages of the adaptive immune response. Little is known about the functional role of IgM during infection with chikungunya virus (CHIKV), a recently reemerging arbovirus that has caused large global outbreaks. In this study, we studied antibody responses in 102 serum samples collected during CHIKV outbreaks in Malaysia. We described the neutralizing role of IgM at different times post-infection and examined the independent contributions of IgM and IgG towards the neutralizing capacity of human immune sera during the early phase of infection, including the differences in targets of neutralizing epitopes. Neutralizing IgM starts to appear as early as day 4 of symptoms, and their appearance from day 6 is associated with a reduction in viremia. IgM acts in a complementary manner with the early IgG, but plays the main neutralizing role up to a point between days 4 and 10 which varies between individuals. After this point, total neutralizing capacity is attributable almost entirely to the robust neutralizing IgG response. IgM preferentially binds and targets epitopes on the CHIKV surface E1-E2 glycoproteins, rather than individual E1 or E2. These findings provide insight into the early antibody responses to CHIKV, and have implications for design of diagnostic serological assays.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chikungunya Fever/immunology , Chikungunya virus/immunology , Immunoglobulin M/immunology , Animals , Antigen-Antibody Reactions , Cell Line , Chikungunya Fever/blood , Cricetinae , Epitopes/immunology , Humans
9.
PLoS Negl Trop Dis ; 10(8): e0004960, 2016 08.
Article in English | MEDLINE | ID: mdl-27571254

ABSTRACT

BACKGROUND: Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus which causes epidemics of fever, severe joint pain and rash. Between 2005 and 2010, the East/Central/South African (ECSA) genotype was responsible for global explosive outbreaks across India, the Indian Ocean and Southeast Asia. From late 2013, Asian genotype CHIKV has caused outbreaks in the Americas. The characteristics of cross-antibody efficacy and epitopes are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We characterized human immune sera collected during two independent outbreaks in Malaysia of the Asian genotype in 2006 and the ECSA genotype in 2008-2010. Neutralizing capacity was analyzed against representative clinical isolates as well as viruses rescued from infectious clones of ECSA and Asian CHIKV. Using whole virus antigen and recombinant E1 and E2 envelope glycoproteins, we further investigated antibody binding sites, epitopes, and antibody titers. Both ECSA and Asian sera demonstrated stronger neutralizing capacity against the ECSA genotype, which corresponded to strong epitope-antibody interaction. ECSA serum targeted conformational epitope sites in the E1-E2 glycoprotein, and E1-E211K, E2-I2T, E2-H5N, E2-G118S and E2-S194G are key amino acids that enhance cross-neutralizing efficacy. As for Asian serum, the antibodies targeting E2 glycoprotein correlated with neutralizing efficacy, and I2T, H5N, G118S and S194G altered and improved the neutralization profile. Rabbit polyclonal antibody against the N-terminal linear neutralizing epitope from the ECSA sequence has reduced binding capacity and neutralization efficacy against Asian CHIKV. These findings imply that the choice of vaccine strain may impact cross-protection against different genotypes. CONCLUSION/SIGNIFICANCE: Immune serum from humans infected with CHIKV of either ECSA or Asian genotypes showed differences in binding and neutralization characteristics. These findings have implications for the continued outbreaks of co-circulating CHIKV genotypes and effective design of vaccines and diagnostic serological assays.


Subject(s)
Antibodies, Viral/blood , Antigenic Variation , Chikungunya virus/genetics , Chikungunya virus/immunology , Epitopes, B-Lymphocyte/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Cell Line , Chikungunya Fever/epidemiology , Chikungunya Fever/immunology , Chikungunya virus/isolation & purification , Cricetinae , Disease Outbreaks , Epitopes, B-Lymphocyte/genetics , Genotype , Humans , Immunization, Passive , Malaysia/epidemiology , Neutralization Tests , Phylogeny , Viral Envelope Proteins/genetics
10.
Methods Mol Biol ; 1426: 51-61, 2016.
Article in English | MEDLINE | ID: mdl-27233260

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-borne arbovirus which poses a major threat to global public health. Definitive CHIKV diagnosis is crucial, especially in distinguishing the disease from dengue virus, which co-circulates in endemic areas and shares the same mosquito vectors. Laboratory diagnosis is mainly based on serological or molecular approaches. The E2 glycoprotein is a good candidate for serological diagnosis since it is the immunodominant antigen during the course of infection, and reacts with seropositive CHIKV sera. In this chapter, we describe the generation of stable clone Sf9 (Spodoptera frugiperda) cells expressing secreted, soluble, and native recombinant CHIKV E2 glycoprotein. We use direct plasmid expression in insect cells, rather than the traditional technique of generating recombinant baculovirus. This recombinant protein is useful for serological diagnosis of CHIKV infection.


Subject(s)
Antibodies, Viral/metabolism , Chikungunya virus/metabolism , Viral Envelope Proteins/immunology , Animals , Chikungunya virus/immunology , Immunodominant Epitopes/immunology , Recombinant Proteins/immunology , Serologic Tests , Sf9 Cells
12.
J Virol Methods ; 195: 126-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24134938

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-borne arbovirus which has recently re-emerged globally and poses a major threat to public health. Infection leads to severe arthralgia, and disease management remains supportive in the absence of vaccines and anti-viral interventions. The high specificities of monoclonal antibodies (mAbs) have been exploited in immunodiagnostics and immunotherapy in recent decades. In this study, eight different clones of mAbs were generated and characterised. These mAbs targeted the linear epitopes on the CHIKV E2 envelope glycoprotein, which is the major target antigen during infection. All the mAbs showed binding activity against the purified CHIKV virion or recombinant E2 when analysed by immunofluorescence, ELISA and Western blot. The epitopes of each mAb were mapped by overlapping synthetic peptide-based ELISA. The epitopes are distributed at different functional domains of E2 glycoprotein, namely at domain A, junctions of ß-ribbons with domains A and B, and domain C. Alignment of mAb epitope sequences revealed that some are well-conserved within different genotypes of CHIKV, while some are identical to and likely to cross-react with the closely-related alphavirus O'nyong-nyong virus. These mAbs with their mapped epitopes are useful for the development of diagnostic or research tools, including immunofluorescence, ELISA and Western blot.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Chikungunya virus/immunology , Epitopes, B-Lymphocyte/immunology , Glycoproteins/immunology , Viral Proteins/immunology , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/isolation & purification , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Fluorescent Antibody Technique , Immunologic Tests/methods , Mice , Mice, Inbred BALB C
13.
PLoS One ; 7(11): e50476, 2012.
Article in English | MEDLINE | ID: mdl-23209750

ABSTRACT

BACKGROUND: Mosquito-borne Chikungunya virus (CHIKV) has recently re-emerged globally. The epidemic East/Central/South African (ECSA) strains have spread for the first time to Asia, which previously only had endemic Asian strains. In Malaysia, the ECSA strain caused an extensive nationwide outbreak in 2008, while the Asian strains only caused limited outbreaks prior to this. To gain insight into these observed epidemiological differences, we compared genotypic and phenotypic characteristics of CHIKV of Asian and ECSA genotypes isolated in Malaysia. METHODS AND FINDINGS: CHIKV of Asian and ECSA genotypes were isolated from patients during outbreaks in Bagan Panchor in 2006, and Johor in 2008. Sequencing of the CHIKV strains revealed 96.8% amino acid similarity, including an unusual 7 residue deletion in the nsP3 protein of the Asian strain. CHIKV replication in cells and Aedes mosquitoes was measured by virus titration. There were no differences in mammalian cell lines. The ECSA strain reached significantly higher titres in Ae. albopictus cells (C6/36). Both CHIKV strains infected Ae. albopictus mosquitoes at a higher rate than Ae. aegypti, but when compared to each other, the ECSA strain had much higher midgut infection and replication, and salivary gland dissemination, while the Asian strain infected Ae. aegypti at higher rates. CONCLUSIONS: The greater ability of the ECSA strain to replicate in Ae. albopictus may explain why it spread far more quickly and extensively in humans in Malaysia than the Asian strain ever did, particularly in rural areas where Ae. albopictus predominates. Intergenotypic genetic differences were found at E1, E2, and nsP3 sites previously reported to be determinants of host adaptability in alphaviruses. Transmission of CHIKV in humans is influenced by virus strain and vector species, which has implications for regions with more than one circulating CHIKV genotype and Aedes species.


Subject(s)
Chikungunya virus/genetics , Animals , Cell Line , Chikungunya virus/classification , Culicidae/virology , Genotype , Malaysia , Phylogeny , Vero Cells
14.
EMBO Mol Med ; 4(4): 330-43, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22389221

ABSTRACT

Chikungunya virus (CHIKV) and related arboviruses have been responsible for large epidemic outbreaks with serious economic and social impact. The immune mechanisms, which control viral multiplication and dissemination, are not yet known. Here, we studied the antibody response against the CHIKV surface antigens in infected patients. With plasma samples obtained during the early convalescent phase, we showed that the naturally-acquired IgG response is dominated by IgG3 antibodies specific mostly for a single linear epitope 'E2EP3'. E2EP3 is located at the N-terminus of the E2 glycoprotein and prominently exposed on the viral envelope. E2EP3-specific antibodies are neutralizing and their removal from the plasma reduced the CHIKV-specific antibody titer by up to 80%. Screening of E2EP3 across different patient cohorts and in non-human primates demonstrated the value of this epitope as a good serology detection marker for CHIKV infection already at an early stage. Mice vaccinated by E2EP3 peptides were protected against CHIKV with reduced viremia and joint inflammation, providing a pre-clinical basis for the design of effective vaccine against arthralgia-inducing CHIKV and other alphaviruses.


Subject(s)
Alphavirus Infections/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chikungunya virus/immunology , Immunoglobulin G/immunology , Alphavirus Infections/blood , Alphavirus Infections/prevention & control , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Formation , Chikungunya Fever , Epitopes/blood , Epitopes/chemistry , Epitopes/immunology , Female , Humans , Immunoglobulin G/blood , Macaca mulatta , Mice , Mice, Inbred C57BL , Models, Molecular , Vaccination , Viral Envelope Proteins/blood , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Viral Vaccines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...