Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cell Biol ; 26(6): 1003-1018, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38858501

ABSTRACT

Patients with IDH-wild-type glioblastomas have a poor five-year survival rate along with limited treatment efficacy due to immune cell (glioma-associated microglia and macrophages) infiltration promoting tumour growth and resistance. To enhance therapeutic options, our study investigated the unique RNA-RNA-binding protein complex LOC-DHX15. This complex plays a crucial role in driving immune cell infiltration and tumour growth by establishing a feedback loop between cancer and immune cells, intensifying cancer aggressiveness. Targeting this complex with blood-brain barrier-permeable small molecules improved treatment efficacy, disrupting cell communication and impeding cancer cell survival and stem-like properties. Focusing on RNA-RNA-binding protein interactions emerges as a promising approach not only for glioblastomas without the IDH mutation but also for potential applications beyond cancer, offering new avenues for developing therapies that address intricate cellular relationships in the body.


Subject(s)
Brain Neoplasms , Glioblastoma , Isocitrate Dehydrogenase , RNA-Binding Proteins , Tumor Microenvironment , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/drug therapy , Humans , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Animals , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , Mice , Mutation , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays , Cell Proliferation , Gene Expression Regulation, Neoplastic
2.
Cancer Discov ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38885349

ABSTRACT

Over-consumption of iron-rich red meat and hereditary or genetic iron overload are associated with increased risk of colorectal carcinogenesis, yet the mechanistic basis of how metal-mediated signaling leads to oncogenesis remains enigmatic. Using fresh colorectal cancer (CRC) samples we identify Pirin, an iron sensor, that overcomes a rate-limiting step in oncogenesis, by re-activating the dormant human-reverse-transcriptase (hTERT) subunit of telomerase holoenzyme in an iron-(Fe3+)-dependent-manner and thereby drives CRCs. Chemical genetic screens combined with isothermal-dose response fingerprinting and mass-spectrometry identified a small molecule SP2509, that specifically inhibits Pirin-mediated hTERT reactivation in CRCs by competing with iron-(Fe3+) binding. Our findings, first to document how metal ions reactivate telomerase, provide a molecular mechanism for the well-known association between red meat, and increased incidence of CRCs. Small molecules like SP2509 represent a novel modality to target telomerase that acts as driver of 90% human cancers and is yet to be targeted in clinic.

3.
Nucleic Acids Res ; 51(1): 1-16, 2023 01 11.
Article in English | MEDLINE | ID: mdl-35697349

ABSTRACT

Transcriptional reactivation of hTERT is the limiting step in tumorigenesis. While mutations in hTERT promoter present in 19% of cancers are recognized as key drivers of hTERT reactivation, mechanisms by which wildtype hTERT (WT-hTERT) promoter is reactivated, in majority of human cancers, remain unknown. Using primary colorectal cancers (CRC) we identified Tert INTeracting region 2 (T-INT2), the critical chromatin region essential for reactivating WT-hTERT promoter in CRCs. Elevated ß-catenin and JunD level in CRC facilitates chromatin interaction between hTERT promoter and T-INT2 that is necessary to turn on hTERTexpression. Pharmacological screens uncovered salinomycin, which inhibits JunD mediated hTERT-T-INT2 interaction that is required for the formation of a stable transcription complex on the hTERT promoter. Our results showed for the first time how known CRC alterations, such as APC, lead to WT-hTERT promoter reactivation during stepwise-tumorigenesis and provide a new perspective for developing cancer-specific drugs.


Healthy and cancer cells harbor the same DNA sequence, but reactivation of the Human Telomerase Reverse Transcriptase (hTERT) gene is observed only in cancer cells. How does that happen was not known for over three decades of research? This study identifies a specific DNA structure that forms only in cancer cells and brings the necessary molecular machinery into the correct position to activate the hTERT gene. The detailed mechanism of hTERT activation provided in this study will be instrumental in designing cancer cell-specific hTERT inhibitors, especially since all the other ways of inhibiting telomerase failed in the clinic.


Subject(s)
Colorectal Neoplasms , Telomerase , Humans , Carcinogenesis , Chromatin/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Promoter Regions, Genetic , Telomerase/antagonists & inhibitors , Telomerase/genetics , Transcription, Genetic
4.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35027447

ABSTRACT

Cancer-specific hTERT promoter mutations reported in 19% of cancers result in enhanced telomerase activity. Understanding the distinctions between transcriptional regulation of wild-type (WT) and mutant (Mut) hTERT promoters may open up avenues for development of inhibitors which specially block hTERT expression in cancer cells. To comprehensively identify physiological regulators of WT- or Mut-hTERT promoters, we generated several isogenic reporter cells driven by endogenous hTERT loci. Genome-wide CRISPR-Cas9 and small interfering RNA screens using these isogenic reporter lines identified specific regulators of Mut-hTERT promoters. We validate and characterize one of these hits, namely, MED12, a kinase subunit of mediator complex. We demonstrate that MED12 specifically drives expression of hTERT from the Mut-hTERT promoter by mediating long-range chromatin interaction between the proximal Mut-hTERT promoter and T-INT1 distal regulatory region 260 kb upstream. Several hits identified in our screens could serve as potential therapeutic targets, inhibition of which may specifically block Mut-hTERT promoter driven telomerase reactivation in cancers.


Subject(s)
Mutation , Promoter Regions, Genetic , Telomerase/genetics , CRISPR-Cas Systems , Cell Line, Tumor , Chromatin , DNA-Binding Proteins , Gene Editing , Gene Expression Regulation, Neoplastic , Humans , Mediator Complex/genetics , Mediator Complex/metabolism , Neoplasms/genetics , Regulatory Sequences, Nucleic Acid , Telomerase/metabolism , Transcription Factors , Transcription, Genetic
5.
Gut ; 70(10): 1857-1871, 2021 10.
Article in English | MEDLINE | ID: mdl-33239342

ABSTRACT

OBJECTIVE: NFκB is the key modulator in inflammatory disorders. However, the key regulators that activate, fine-tune or shut off NFκB activity in inflammatory conditions are poorly understood. In this study, we aim to investigate the roles that NFκB-specific long non-coding RNAs (lncRNAs) play in regulating inflammatory networks. DESIGN: Using the first genetic-screen to identify NFκB-specific lncRNAs, we performed RNA-seq from the p65-/- and Ikkß-/- mouse embryonic fibroblasts and report the identification of an evolutionary conserved lncRNA designated mNAIL (mice) or hNAIL (human). hNAIL is upregulated in human inflammatory disorders, including UC. We generated mNAILΔNFκB mice, wherein deletion of two NFκB sites in the proximal promoter of mNAIL abolishes its induction, to study its function in colitis. RESULTS: NAIL regulates inflammation via sequestering and inactivating Wip1, a known negative regulator of proinflammatory p38 kinase and NFκB subunit p65. Wip1 inactivation leads to coordinated activation of p38 and covalent modifications of NFκB, essential for its genome-wide occupancy on specific targets. NAIL enables an orchestrated response for p38 and NFκB coactivation that leads to differentiation of precursor cells into immature myeloid cells in bone marrow, recruitment of macrophages to inflamed area and expression of inflammatory genes in colitis. CONCLUSION: NAIL directly regulates initiation and progression of colitis and its expression is highly correlated with NFκB activity which makes it a perfect candidate to serve as a biomarker and a therapeutic target for IBD and other inflammation-associated diseases.


Subject(s)
Colitis/genetics , Colitis/metabolism , RNA, Long Noncoding/metabolism , Transcription Factor RelA/metabolism , Animals , Biomarkers/metabolism , Disease Progression , Fibroblasts/metabolism , Humans , MAP Kinase Signaling System , Mice , Protein Phosphatase 2C/metabolism
6.
Sci Rep ; 7(1): 6664, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28751642

ABSTRACT

Recently, food-based bioactive ingredients, such as vinegar, have been proposed as a potential solution to overcome the global obesity epidemic. Although acetic acid has been identified as the main component in vinegar that contributes to its anti-obesity effect, reports have shown that vinegar produced from different starting materials possess different degrees of bioactivity. This study was performed to compare the anti-obesity and anti-inflammatory effects of synthetic acetic acid vinegar and Nipa vinegar in mice fed a high-fat diet. In this work, mice were fed a high-fat diet for 33 weeks. At the start of week 24, obese mice were orally fed synthetic acetic acid vinegar or Nipa vinegar (0.08 and 2 ml/kg BW) until the end of week 33. Mice fed a standard pellet diet served as a control. Although both synthetic acetic acid vinegar and Nipa vinegar effectively reduced food intake and body weight, a high dose of Nipa vinegar more effectively reduced lipid deposition, improved the serum lipid profile, increased adipokine expression and suppressed inflammation in the obese mice. Thus, a high dose of Nipa vinegar may potentially alleviate obesity by altering the lipid metabolism, inflammation and gut microbe composition in high-fat-diet-induced obese mice.


Subject(s)
Acetic Acid/pharmacology , Cholesterol/blood , Lipoproteins, HDL/blood , Lipoproteins, LDL/blood , Obesity/drug therapy , Adipokines/genetics , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Obesity Agents/pharmacology , Diet, High-Fat/adverse effects , Gene Expression Regulation , Lipid Metabolism/drug effects , Mice, Inbred C57BL , Mice, Obese , Obesity/blood , Obesity/metabolism , Obesity/prevention & control , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...