Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bioinform Comput Biol ; 19(6): 2140007, 2021 12.
Article in English | MEDLINE | ID: mdl-34775921

ABSTRACT

We present BOPAL 2.0, an improved version of the BOPAL algorithm for the evolutionary history inference of tRNA and rRNA genes in bacterial genomes. Our approach can infer complete evolutionary scenarios and ancestral gene orders on a phylogeny and considers a wide range of events such as duplications, deletions, substitutions, inversions and transpositions. It is based on the fact that tRNA and rRNA genes are often organized in operons/clusters in bacteria, and this information is used to help identify orthologous genes for each genome comparison. BOPAL 2.0 introduces new features, such as a triple-wise alignment step, context-aware singleton matching and a second pass of the algorithm. Evaluation on simulated datasets shows that BOPAL 2.0 outperforms the original BOPAL in terms of the accuracy of inferred events and ancestral genomes. We also present a study of the tRNA/rRNA gene evolution in the Clostridium genus, in which the organization of these genes is very divergent. Our results indicate that tRNA and rRNA genes in Clostridium have evolved through numerous duplications, losses, transpositions and substitutions, but very few inversions were inferred.


Subject(s)
Genome, Bacterial , RNA, Transfer , Clostridium/genetics , Evolution, Molecular , Genes, rRNA , Phylogeny , RNA, Transfer/genetics
2.
BMC Genomics ; 21(Suppl 2): 252, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32299351

ABSTRACT

BACKGROUND: In bacterial genomes, rRNA and tRNA genes are often organized into operons, i.e. segments of closely located genes that share a single promoter and are transcribed as a single unit. Analyzing how these genes and operons evolve can help us understand what are the most common evolutionary events affecting them and give us a better picture of ancestral codon usage and protein synthesis. RESULTS: We introduce BOPAL, a new approach for the inference of evolutionary histories of rRNA and tRNA genes in bacteria, which is based on the identification of orthologous operons. Since operons can move around in the genome but are rarely transformed (e.g. rarely broken into different parts), this approach allows for a better inference of orthologous genes in genomes that have been affected by many rearrangements, which in turn helps with the inference of more realistic evolutionary scenarios and ancestors. CONCLUSIONS: From our comparisons of BOPAL with other gene order alignment programs using simulated data, we have found that BOPAL infers evolutionary events and ancestral gene orders more accurately than other methods based on alignments. An analysis of 12 Bacillus genomes also showed that BOPAL performs just as well as other programs at building ancestral histories in a minimal amount of events.


Subject(s)
Bacteria/genetics , Genomics/methods , Operon/genetics , RNA, Ribosomal/genetics , RNA, Transfer/genetics , Algorithms , Bacillus/genetics , Databases, Genetic , Evolution, Molecular , Gene Duplication , Gene Order , Genome, Bacterial , Models, Genetic , Phylogeny , Research Design , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...