Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Nano ; 16(12): 20946-20955, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36413764

ABSTRACT

Two-dimensional (2D) materials, featuring distinctive electronic and optical properties and dangling-bond-free surfaces, are promising for developing high-performance on-chip photodetectors in photonic integrated circuits. However, most of the previously reported devices operating in the photoconductive mode suffer from a high dark current or a low responsivity. Here, we demonstrate a MoTe2 p-i-n homojunction fabricated directly on a silicon photonic crystal (PC) waveguide, which enables on-chip photodetection with ultralow dark current, high responsivity, and fast response speed. The adopted silicon PC waveguide is electrically split into two individual back gates to selectively dope the top regions of the MoTe2 channel in p- or n-types. High-quality reconfigurable MoTe2 (p-i-n, n-i-p, n-i-n, p-i-p) homojunctions are realized successfully, presenting rectification behaviors with ideality factors approaching 1.0 and ultralow dark currents less than 90 pA. Waveguide-assisted MoTe2 absorption promises a sensitive photodetection in the telecommunication O-band from 1260 to 1340 nm, though it is close to MoTe2's absorption band-edge. A competitive photoresponsivity of 0.4 A/W is realized with a light on/off current ratio exceeding 104 and a record-high normalized photocurrent-to-dark-current ratio of 106 mW-1. The ultrasmall capacitance of p-i-n homojunction and high carrier mobility of MoTe2 promise a high dynamic response bandwidth close to 34.0 GHz. The proposed device geometry has the advantages of employing a silicon PC waveguide as the back gates to build a 2D material p-i-n homojunction directly and simultaneously to enhance light-2D material interaction. It provides a potential pathway to develop 2D material-based photodetectors, laser diodes, and electro-optic modulators on silicon photonic chips.

2.
Small ; 18(1): e2105684, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34741404

ABSTRACT

To develop methods to generate, manipulate, and detect plasmonic signals by electrical means with complementary metal-oxide-semiconductor (CMOS)-compatible materials is essential to realize on-chip electronic-plasmonic transduction. Here, electrically driven, CMOS-compatible electronic-plasmonic transducers with Al-AlOX -Cu tunnel junctions as the excitation source of surface plasmon polaritons (SPPs) and Si-Cu Schottky diodes as the detector of SPPs, connected via plasmonic strip waveguides of Cu, are demonstrated. Remarkably, the electronic-plasmonic transducers exhibit overall transduction efficiency of 1.85 ± 0.03%, five times higher than previously reported transducers with two tunnel junctions (metal-insulator-metal (MIM)-MIM transducers) where SPPs are detected based on optical rectification. The result establishes a new platform to convert electronic signals to plasmonic signals via electrical means, paving the way toward CMOS-compatible plasmonic components.

3.
Adv Mater ; 33(37): e2101128, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34323320

ABSTRACT

Electro-optic modulators are among the most important building blocks in optical communication networks. Lithium niobate, for example, has traditionally been widely used to fabricate high-speed optical modulators due to its large Pockels effect. Another material, barium titanate, nominally has a 50 times stronger r-parameter and would ordinarily be a more attractive material choice for such modulators or other applications. In practice, barium titanate thin films for optical waveguide devices are usually grown on magnesium oxide due to its low refractive index, allowing vertical mode confinement. However, the crystal quality is normally degraded. Here, a group of scandate-based substrates with small lattice mismatch and low refractive index compared to that of barium titanate is identified, thus concurrently satisfying high crystal quality and vertical optical mode confinement. This work provides a platform for nonlinear on-chip optoelectronics and can be promising for waveguide-based optical devices such as Mach-Zehnder modulators, wavelength division multiplexing, and quantum optics-on-chip.

4.
Chempluschem ; 80(8): 1298-1305, 2015 Aug.
Article in English | MEDLINE | ID: mdl-31973305

ABSTRACT

A series of diketopyrrolopyrrole (DPP) and propylenedioxythiophene (ProDOT)-containing random copolymers with different donor-to-acceptor ratios is synthesized through Stille coupling polymerizations. The low-bandgap polymers display dark tones with colors ranging from magenta to blue, and reveal reversible colored-to-transmissive electrochromism in absorption/transmission-type devices with high optical contrasts (up to 48 and 77 % in the visible and near-infrared regions, respectively), modest switching speeds (a few to tens of seconds) and coloration efficiencies (267-574 cm2 C-1 ), as well as good long-term ambient redox stabilities. The structure-performance relationship of the polymers, in particular, the role of donor-to-acceptor ratio, is investigated, and it is shown that an increase in the amount of acceptor in the polymers leads to slower oxidative but faster reductive switching, accompanied with enhancement of the redox stability. In addition, further study on the influence of film thickness and film morphology reveals that devices with higher optical contrasts are attainable from thicker polymer films at the expense of switching speeds; films with high uniformity and connectedness together with open, loose structures at submicron to micron scale are favorable for achieving good electrochromic performance.

5.
Nanotechnology ; 25(40): 405702, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25213380

ABSTRACT

We report on the effects of substrate, starting material, and temperature on the growth of MoS(2) atomic layers by thermal vapor sulfurization in a tube-furnace system. With Mo as the starting material, atomic layers of MoS(2) flakes are obtained on sapphire substrates while a bell-shaped MoS(2) layer, sandwiched by amorphous SiO(2), is obtained on native-SiO(2)/Si substrates under the same sulfurization conditions. An anomalous thickness-dependent Raman shift (A(1g)) of the MoS(2) atomic layers is observed in Mo-sulfurizations on sapphire substrates, which can be attributed to the competition between the effects of thickness and the surface/interface. Both effects vary with the sulfurizing temperatures for a certain initial Mo thickness. The anomalous frequency trend of A(1g) is missing when using MoO(3) instead of Mo as the starting material. In this case, the lateral growth of MoS(2) on sapphire is also largely improved. Furthermore, the area density of the resultant MoS(2) atomic layers is significantly increased by increasing the deposition temperature of the starting MoO(3) to 700 °C; the adjacent ultrathin MoS(2) grains coalesce in one or other direction, forming connected chains in wafer scale. The thickness of the so-obtained MoS(2) is generally controlled by the thickness of the starting material; however, the structural and morphological properties of MoS(2) grains, towards large area and continuous atomic layers, are strongly dependent on the temperature of the initial material deposition, and on the temperature of sulfurization, because of the competition between surface mobility and atom evaporation.

6.
Nanoscale ; 6(1): 624-9, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24253383

ABSTRACT

Atomically thin Mo(1-x)W(x)S2 (0 ≤ x ≤ 1) ternary compounds have been grown on 2-inch c-plane sapphire substrates with high uniformity by sulfurizing thin Mo(1-x)W(x) layers that were deposited at room temperature using a co-sputtering technique. Atomic force microscopy (AFM), Raman scattering, and optical absorbance spectroscopy (OAS) studies reveal that the Mo(1-x)W(x)S2 films consist of crystallites of two-to-four monolayers in thickness. X-ray photoelectron spectroscopy (XPS) shows that the core levels of Mo3d and W4f shift to lower binding energies while that of S2p shifts to higher ones with the increase in W compositions, which can be related to the larger electron affinity of W (0.8163 eV) than that of Mo (0.7473 eV). OAS has also shown that the direct bandgap of Mo(1-x)W(x)S2 is tuned from 1.85 to 1.99 eV by increasing x from 0 to 1. Both E(1/2)(g) and A(1g) phonon modes of the Mo(1-x)W(x)S2 films exhibit a two-mode behavior. The bandgap tuning and the two-mode phonon behaviors are typically the same as those recently observed in monolayer Mo(1-x)W(x)S2 obtained by mechanical exfoliation, thus shedding light on the bottom-up growth of large-scale two-dimensional Mo(1-x)W(x)S2 ternary alloys.

7.
Nanoscale Res Lett ; 8(1): 506, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24289275

ABSTRACT

We report on a method of fabricating variable patterns of periodic, high aspect ratio silicon nanostructures with sub-50-nm resolution on a wafer scale. The approach marries step-and-repeat nanoimprint lithography (NIL) and metal-catalyzed electroless etching (MCEE), enabling near perfectly ordered Si nanostructure arrays of user-defined patterns to be controllably and rapidly generated on a wafer scale. Periodic features possessing circular, hexagonal, and rectangular cross-sections with lateral dimensions down to sub-50 nm, in hexagonal or square array configurations and high array packing densities up to 5.13 × 107 structures/mm2 not achievable by conventional UV photolithography are fabricated using this top-down approach. By suitably tuning the duration of catalytic etching, variable aspect ratio Si nanostructures can be formed. As the etched Si pattern depends largely on the NIL mould which is patterned by electron beam lithography (EBL), the technique can be used to form patterns not possible with self-assembly methods, nanosphere, and interference lithography for replication on a wafer scale. Good chemical resistance of the nanoimprinted mask and adhesion to the Si substrate facilitate good pattern transfer and preserve the smooth top surface morphology of the Si nanostructures as shown in TEM. This approach is suitable for generating Si nanostructures of controlled dimensions and patterns, with high aspect ratio on a wafer level suitable for semiconductor device production.

8.
Adv Mater ; 24(26): 3532-7, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-22544827

ABSTRACT

The transport properties of GaN nanobelts (NBs) are tuned using a piezotronic effect when a compressive/tensile strain is applied on the GaN NB. This is mainly due to a change in Schottky barrier height (SBH). A theoretical model is proposed to explain the observed phenomenon.


Subject(s)
Electrical Equipment and Supplies , Gallium/chemistry , Mechanical Phenomena , Nanostructures , Models, Theoretical
9.
Langmuir ; 26(19): 15494-507, 2010 Oct 05.
Article in English | MEDLINE | ID: mdl-20828174

ABSTRACT

The dependence of morphology and polymer-chain orientation of regioregular poly(3-hexylthiophene) (rrP3HT) thin films on processing conditions have been widely studied. However, their possible variation across the film thickness direction remains largely unknown. We report here a marked difference in the optical dielectric (n,k) spectra between the top and bottom interfaces of spin-cast (sc) rrP3HT films deposited from chlorobenzene solutions. These spectra were obtained from reflection variable-angle spectroscopic ellipsometry using a self-consistent graded optical model with self-imposed Kramers-Krönig consistency. The top interface shows a red-shifted absorption that is characteristic of better order than at the bottom, across a wide range of film thicknesses. This disparity diminishes in drop-cast (dc) and multipass inkjet-printed (ijp) films, and disappears in amorphous films such as those of polystyrene and of a green-emitting phenyl-substituted poly(p-phenylenevinylene). The (n,k) spectra also reveal that crystallinity increases across sc < dc < ijp films. This is supported by cross section scanning electron microscopy of the cleaved edges and measurement of the microroughness of both the film interfaces. Furthermore, optical anisotropy decreases across sc > dc > ijp films. Finally, near-edge X-ray absorption fine structure spectroscopy also shows the frontier chains in ijp and dc films are more isotropically oriented than those in sc films. These results suggest that semicrystalline conjugated polymer films can be produced far from equilibrium. This explains the marked variation in their (opto)electronic properties between the top and bottom surfaces that has sometimes been found depending on the film deposition method. In particular, an unusually pronounced crystallization is induced by ijp. We label this marked ijp-induced crystallization the "ijp morphology", which appears to be general, as it is found also in single-inkjet-droplet films. It appears also to be responsible for the lower field-effect mobility measured for ijp films deposited on a variety of linear and circular electrode arrays. This however can fortuitously be reversed by annealing in solvent vapor. As all films were deposited in the low Peclet-number regime, we can rule out surface skin formation. We attribute the extensive crystallization to the non-uniform drying of picoliter droplets, further promoted by repeated film swelling-deswelling cycles in multipass-ijp films.

10.
Nanoscale Res Lett ; 5(6): 1051-6, 2010 Apr 22.
Article in English | MEDLINE | ID: mdl-20672057

ABSTRACT

The release and transfer of GaN epilayers to other substrates is of interest for a variety of applications, including heterogeneous integration of silicon logic devices, III-V power devices and optical devices. We have developed a simple wet chemical etching method to release high-quality epitaxial III-nitride films from their substrates. This method builds on a nanoepitaxial lateral overgrowth (NELO) process that provides III-Nitride films with low dislocation densities. NELO is accomplished using a nanoporous mask layer patterned on GaN substrates. Chemical removal of the SiO2 layer after growth of III-Nitride overlayers causes fracture at the interface between the GaN film and the original GaN substrate, resulting in free-standing GaN films with nanostructured surfaces on one side. These layers can be transferred to other substrates, and the nano-structured surface can be used in photonic devices, or planarized for power devices.

11.
Nanotechnology ; 21(19): 195305, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20400824

ABSTRACT

We report a growth phenomenon where uniform gallium arsenide (GaAs) islands were found to grow underneath an ordered array of SiO(2) nanodisks on a GaAs(100) substrate. Each island eventually grows into a pyramidal shape resulting in the toppling of the supported SiO(2) nanodisk. This phenomenon occurred consistently for each nanodisk across a large patterned area of approximately 50 x 50 microm(2) (with nanodisks of 210 nm diameter and 280 nm spacing). The growth mechanism is attributed to a combination of 'catalytic' growth and facet formation.

12.
J Phys Chem B ; 110(23): 11081-7, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16771369

ABSTRACT

Dense, crystalline arrays of InGaN nanorings, nanodots, and nanoarrows have been fabricated on GaN substrates by template-assisted nano-area selective growth. To create the nanostructures, we have used nanoporous anodic alumina films as templates to pattern nanopores in an SiO2 transfer layer, and then used this patterned SiO2 layer as a template for nitride growth by metalorganic chemical vapor deposition. We have varied the diameter of the deposited nitride nanostructures from 35 to 250 nm by changing the initial anodic alumina template structure. In addition, by controlling the nitride growth time we have created various types of nanostructures, from nanorings to nanoarrows. This structural evolution begins with the nucleation and formation of a nanoring structure, followed by coalescence and growth to form faceted nanodots, and finally lateral overgrowth to form faceted nanoarrows.

13.
Opt Express ; 13(2): 654-9, 2005 Jan 24.
Article in English | MEDLINE | ID: mdl-19488396

ABSTRACT

A symmetrical digital photonic splitting switch with a low insertion loss and a low driving voltage is developed using carrier injection in a silicon-germanium material for optical communication systems and networks at a wavelength of 1.55 mum. The switch structure has been improved based on a traditional 1x2 Y-shaped configuration by using two widened carrier injection regions. The switch has a threshold voltage of 1.0 V and a corresponding threshold current of 85 mA on one of the two output waveguide arms. The calculated driving current density is 5.7 kA/cm2 and the calculated power consumption is 85 mW at the 85 mA of threshold current. The measured insertion loss and the crosstalk are 5.2 dB and -9.6 dB, respectively, at driving voltage over 2 V.

SELECTION OF CITATIONS
SEARCH DETAIL
...