Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (164)2020 10 10.
Article in English | MEDLINE | ID: mdl-33104062

ABSTRACT

Quality control in botanical products begins with the raw material supply. Traditionally, botanical identification is performed through morphological assessment and chemical analytical methods. However, the lack of availability of botanists, especially in recent years, coupled with the need to enhance quality control to combat the stresses on the supply chain brought by increasing consumer demand and climate change, necessitates alternative approaches. The goal of this protocol is to facilitate botanical species identification using a portable qPCR system on the field or in any setting, where access to laboratory equipment and expertise is limited. Target DNA is amplified using dye-based qPCR, with DNA extracted from botanical reference materials serving as a positive control. The target DNA is identified by its specific amplification and matching its melting peak against the positive control. A detailed description of the steps and parameters, from hands-on field sample collection, to DNA extraction, PCR amplification, followed by data interpretation, has been included to ensure that readers can replicate this protocol. The results produced align with traditional laboratory botanical identification methods. The protocol is easy to perform and cost-effective, enabling quality testing on raw materials as close to the point of origin of the supply chain as possible.


Subject(s)
Matricaria/chemistry , Real-Time Polymerase Chain Reaction/methods , DNA, Plant/isolation & purification , Fluorescence , Matricaria/anatomy & histology , Quality Control , Specimen Handling , Transition Temperature
2.
Fitoterapia ; 146: 104666, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32534007

ABSTRACT

Parsley (Petroselinum crispum) leaf is an herb widely consumed for its health benefits. Due to similar morphological and chemical profiles, celery leaf may be a source of substitution in commercial parsley materials. In order to detect this substitution, the present work characterized parsley and celery leaf at the cultivar level by physical, chemical and DNA approaches. In contrast to the variations observed in physical appearances and chemical profiles that make verification of authenticity difficult, consistent differences observed between their DNA sequences are suitable for verifying parsley material authenticity. To identify parsley and detect celery simultaneously, a multiplex qPCR assay was developed and validated with respect to efficiency and specificity. Further testing indicated the assay can be used to detect 1% (w/w) celery in parsley materials with a probability of detection greater than 0.9. The developed method is well-suited for routine quality control to prevent parsley material misidentification in commercial trade.


Subject(s)
Food Analysis/methods , Petroselinum/classification , Plant Leaves/classification , Polymerase Chain Reaction/methods , Apium/chemistry , Apium/classification , California , DNA, Plant/analysis , Petroselinum/chemistry , Plant Leaves/chemistry
3.
Arterioscler Thromb Vasc Biol ; 39(3): 387-401, 2019 03.
Article in English | MEDLINE | ID: mdl-30651003

ABSTRACT

Objective- Atherosclerotic coronary artery disease is the leading cause of death worldwide, and current treatment options are insufficient. Using systems-level network cluster analyses on a large coronary artery disease case-control cohort, we previously identified PCSK3 (proprotein convertase subtilisin/kexin family member 3; FURIN) as a member of several coronary artery disease-associated pathways. Thus, our objective is to determine the role of FURIN in atherosclerosis. Approach and Results- In vitro, FURIN inhibitor treatment resulted in reduced monocyte migration and reduced macrophage and vascular endothelial cell inflammatory and cytokine gene expression. In vivo, administration of an irreversible inhibitor of FURIN, α-1-PDX (α1-antitrypsin Portland), to hyperlipidemic Ldlr-/- mice resulted in lower atherosclerotic lesion area and a specific reduction in severe lesions. Significantly lower lesional macrophage and collagen area, as well as systemic inflammatory markers, were observed. MMP2 (matrix metallopeptidase 2), an effector of endothelial function and atherosclerotic lesion progression, and a FURIN substrate was significantly reduced in the aorta of inhibitor-treated mice. To determine FURIN's role in vascular endothelial function, we administered α-1-PDX to Apoe-/- mice harboring a wire injury in the common carotid artery. We observed significantly decreased carotid intimal thickness and lower plaque cellularity, smooth muscle cell, macrophage, and inflammatory marker content, suggesting protection against vascular remodeling. Overexpression of FURIN in this model resulted in a significant 67% increase in intimal plaque thickness, confirming that FURIN levels directly correlate with atherosclerosis. Conclusions- We show that systemic inhibition of FURIN in mice decreases vascular remodeling and atherosclerosis. FURIN-mediated modulation of MMP2 activity may contribute to the atheroprotection observed in these mice.


Subject(s)
Atherosclerosis/prevention & control , Furin/antagonists & inhibitors , Plaque, Atherosclerotic/drug therapy , alpha 1-Antitrypsin/therapeutic use , Animals , Aorta/enzymology , Atherosclerosis/genetics , Atherosclerosis/pathology , Carotid Artery, Common , Disease Progression , Drug Evaluation, Preclinical , Enzyme Induction/drug effects , Furin/genetics , Furin/physiology , Gene Expression Regulation/drug effects , Macrophages/physiology , Male , Matrix Metalloproteinase 2/analysis , Mice , Mice, Inbred C57BL , Monocytes/physiology , Plaque, Atherosclerotic/pathology , Receptors, LDL/deficiency , Tunica Intima/drug effects , Tunica Intima/pathology , Vascular Remodeling , alpha 1-Antitrypsin/pharmacology
4.
FASEB J ; 32(7): 3792-3802, 2018 07.
Article in English | MEDLINE | ID: mdl-29481310

ABSTRACT

Bile acids (BAs) are surfactant molecules that regulate the intestinal absorption of lipids. Thus, the modulation of BAs represents a potential therapy for nonalcoholic fatty liver disease (NAFLD), which is characterized by hepatic accumulation of fat and is a major cause of liver disease worldwide. Cyp8b1 is a critical modulator of the hydrophobicity index of the BA pool. As a therapeutic proof of concept, we aimed to determine the impact of Cyp8b1 inhibition in vivo on BA pool composition and as protection against NAFLD. Inhibition of Cyp8b1 expression in mice led to a remodeling of the BA pool, which altered its signaling properties and decreased intestinal fat absorption. In a model of cholesterol-induced NAFLD, Cyp8b1 knockdown significantly decreased steatosis and hepatic lipid content, which has been associated with an increase in fecal lipid and BA excretion. Moreover, inhibition of Cyp8b1 not only decreased hepatic lipid accumulation, but also resulted in the clearance of previously accumulated hepatic cholesterol, which led to a regression in hepatic steatosis. Taken together, our data demonstrate that Cyp8b1 inhibition is a viable therapeutic target of crucial interest for metabolic diseases, such as NAFLD.-Chevre, R., Trigueros-Motos, L., Castaño, D., Chua, T., Corlianò, M., Patankar, J. V., Sng, L., Sim, L., Juin, T. L., Carissimo, G., Ng, L. F. P., Yi, C. N. J., Eliathamby, C. C., Groen, A. K., Hayden, M. R., Singaraja, R. R. Therapeutic modulation of the bile acid pool by Cyp8b1 knockdown protects against nonalcoholic fatty liver disease in mice.


Subject(s)
Bile Acids and Salts/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Steroid 12-alpha-Hydroxylase/genetics , Animals , Female , HEK293 Cells , Humans , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/therapy , RNAi Therapeutics , Steroid 12-alpha-Hydroxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...