Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(7)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202279

ABSTRACT

This study was conducted to determine the responses to saline-alkaline (SA) stress with regard to nutrient accumulation in two rice varieties having different tolerances to salt-stress. A salinity-tolerant landrace, Pokkali, and a salinity-sensitive variety, PTT1, were exposed to three levels of SA conditions, pH 7.0 (mild), pH 8.0 (moderate), and pH 9.0 (severe), under 50 mM Na stress. The results indicated that Pokkali had comparably greater SA tolerance than PTT1 owing to its higher biomass production. The maintenance of the lower Na/K ratio in Pokkali shoots was achieved by the higher expression of OsHKT1;5 encoding a Na+ transporter in the shoots, OsNHX1 encoding a tonoplast-localized Na+/H+ antiporter in the roots, and OsHAK16 encoding a K+ transporter in the roots under SA conditions. We propose that the high expression of Fe deficiency-responsive genes, OsIRT1, OsIRO2, OsYSL15, OsNAS1, and OsNAS2, in both rice varieties under all SA conditions should contribute to Fe homeostasis in the shoots. In addition, SA treatment increased the concentrations of Ca, Mn, Zn, and Cu in the roots but decreased their concentrations in the shoots of both varieties. Overall, the results indicated that high rhizospheric pH influenced nutrient uptake and translocation from the roots to the shoots in rice.

2.
Data Brief ; 31: 106023, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32728604

ABSTRACT

This article describes the growth of 18 acclimatized and 11 non-acclimatized rice varieties grown in a hydroponic nutrient solution in a glasshouse. Four plants from each variety were grown under control conditions, salinity stress following control conditions (salinity), and salinity stress following acclimation (salinity/acclimation) conditions. Sampling was performed at the end of the salinity treatment (36 days of growth). Growth traits such as shoot and root biomass accumulation and lengths were measured for each variety, and the average was calculated using four replicates. This dataset may aid interested researchers in making comparisons with their data and further advance the research on the salinity acclimation process in rice.

3.
Plant Sci ; 297: 110517, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32563456

ABSTRACT

To elucidate the mechanisms of salt acclimation, physiological parameters of 70 rice varieties were compared under control and salt stress conditions after the acclimation treatment. The results indicated that some rice varieties had the ability to acclimatize to salt stress, exhibiting improved growth following the acclimation treatment under subsequent salinity stress compared to those without acclimation treatment. Conversely, some varieties exhibited reduced growth both with and without acclimation treatment under subsequent salinity stress. Acclimatized varieties had differential patterns of Na+ accumulation in the leaf blades because some varieties reduced Na+ accumulation under salinity stress, whereas others did not. Under salt stress, the acclimatized varieties with low Na+ accumulation in the leaf blades highly induced the expression of the OsHKT1;5 gene in the roots, which may contribute to Na+ exclusion from the shoots. On the other hand, the acclimatized varieties with high Na+ accumulation in the leaf blades exhibited higher induction of the OsNHX1 gene, whose gene product participates in the compartmentalization of Na+ into vacuoles. Thus, rice develops different mechanisms of salinity acclimation using two Na+ transport systems, and active regulation of Na+ transport at the transcription level may be involved in the salt acclimation process and enhance salinity tolerance.


Subject(s)
Cation Transport Proteins/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Salt-Tolerant Plants/metabolism , Acclimatization , Cation Transport Proteins/genetics , Cation Transport Proteins/physiology , Malondialdehyde/metabolism , Oryza/genetics , Oryza/physiology , Plant Proteins/physiology , Potassium/metabolism , Salt Stress , Sodium/metabolism , Transcriptome
4.
Plant Sci ; 287: 110171, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31481219

ABSTRACT

This study was designed to elucidate the physiological responses of two rice genotypes to different pH levels under high saline stress. A salt-tolerant cultivar, FL478, and a salt-sensitive cultivar, IR29, were exposed to saline-alkaline solutions supplemented with 50 mM Na at pH 9 (severe), pH 8 (moderate), and pH 7 (mild) for three weeks. The results indicated that FL478 is relatively saline-alkaline tolerant compared to IR29, and this was evident from its higher dry mass production, lower Na+ concentration in the leaf blades, and maintenance of water balance under both mild and moderate saline-alkaline stress conditions. In both cultivars, Na+ concentrations in the leaf blades were considerably higher at pH 8 than at pH 7, indicating that high alkaline stress promoted Na+ accumulation under highly saline conditions. FL478 plants had lower Na+/K+ ratios in leaf blades and leaf sheaths than IR29 plants under saline-alkaline stress at both pH 7 and pH 8. To understand the mechanisms behind the difference in saline-alkaline tolerance between the two rice genotypes, transcript levels of the genes encoding Na+ transport proteins were analyzed. In response to mild and moderate saline-alkaline stress conditions, salt-tolerant FL478 had highly induced expression of the OsHKT1;5 gene in the roots, corresponding to lower Na+ accumulation in the leaf blades. Induction of high expression of the OsSOS1 gene in the roots of FL478 implied that Na may be effectively exported from cytosols to apoplasts in the roots resulting in sequestration of Na+ to outside of the roots and loading Na+ in xylem transpiration stream. On the other hand, the salt-sensitive IR29 had lower expression of the genes related to Na+ transporters, such as the OsHKT1;5 gene and the OsSOS1 gene, in the roots, leading to higher Na+ accumulation in the shoots. Expression of the determinant genes for alkaline tolerance, such as K+ and Fe acquisition and acidification of the rhizosphere was highly induced in FL478, but not in IR29. Thus, molecular analysis suggested that genes encoding Na+ transport proteins are involved in regulating Na+ transport under saline-alkaline stress in both salt-tolerant and salt-sensitive rice cultivars, and this is useful information for improving saline-alkaline tolerance traits of rice in the future.


Subject(s)
Oryza/metabolism , Sodium/metabolism , Cation Transport Proteins/metabolism , Hydrogen-Ion Concentration , Oryza/physiology , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Potassium/metabolism , Salt Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...