Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Biochimie ; 204: 171, 2023 01.
Article in English | MEDLINE | ID: mdl-36623910

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Following concerns raised by Dr. E. Bik and an anonymous reader, the journal conducted an investigation and found evidence that there had been improper manipulation and duplication of images in Figs. 2A, 5C and 6C, as shown by partial overlap between images representing different experiments. An anonymous reader has also drawn attention to flow-cytometry data in Fig. 1 similar to previously published data from a different laboratory (Med Sci Monit, 2018; 24: 5874-5880 DOI: 10.12659/MSM.909682, Fig. 2B). After raising the complaint with the authors, the corresponding author agreed that the paper needed to be retracted. The authors apologise for any confusion that may have arisen from their article.

2.
Article in English | WPRIM (Western Pacific) | ID: wpr-982050

ABSTRACT

Intranasal drug delivery system is a non-invasive drug delivery route with the advantages of no first-pass effect, rapid effect and brain targeting. It is a feasible alternative to drug delivery via injection, and a potential drug delivery route for the central nervous system. However, the nasal physiological environment is complex, and the nasal delivery system requires "integration of medicine and device". Its delivery efficiency is affected by many factors such as the features and formulations of drug, delivery devices and nasal cavity physiology. Some strategies have been designed to improve the solubility, stability, membrane permeability and nasal retention time of drugs. These include the use of prodrugs, adding enzyme inhibitors and absorption enhancers to preparations, and new drug carriers, which can eventually improve the efficiency of intranasal drug delivery. This article reviews recent publications and describes the above mentioned aspects and design strategies for nasal intranasal drug delivery systems to provide insights for the development of intranasal drug delivery systems.


Subject(s)
Administration, Intranasal , Drug Delivery Systems , Pharmaceutical Preparations , Drug Carriers , Brain , Nasal Cavity/physiology , Nasal Mucosa
3.
Acta Pharmaceutica Sinica B ; (6): 437-450, 2022.
Article in English | WPRIM (Western Pacific) | ID: wpr-929305

ABSTRACT

Dry powder inhalers (DPIs) had been widely used in lung diseases on account of direct pulmonary delivery, good drug stability and satisfactory patient compliance. However, an indistinct understanding of pulmonary delivery processes (PDPs) hindered the development of DPIs. Most current evaluation methods explored the PDPs with over-simplified models, leading to uncompleted investigations of the whole or partial PDPs. In the present research, an innovative modular process analysis platform (MPAP) was applied to investigate the detailed mechanisms of each PDP of DPIs with different carrier particle sizes (CPS). The MPAP was composed of a laser particle size analyzer, an inhaler device, an artificial throat and a pre-separator, to investigate the fluidization and dispersion, transportation, detachment and deposition process of DPIs. The release profiles of drug, drug aggregation and carrier were monitored in real-time. The influence of CPS on PDPs and corresponding mechanisms were explored. The powder properties of the carriers were investigated by the optical profiler and Freeman Technology four powder rheometer. The next generation impactor was employed to explore the aerosolization performance of DPIs. The novel MPAP was successfully applied in exploring the comprehensive mechanism of PDPs, which had enormous potential to be used to investigate and develop DPIs.

4.
Acta Pharmaceutica Sinica B ; (6): 3297-3309, 2021.
Article in English | WPRIM (Western Pacific) | ID: wpr-922795

ABSTRACT

Nanoparticles (NPs) have shown potential in cancer therapy, while a single administration conferring a satisfactory outcome is still unavailable. To address this issue, the dissolving microneedles (DMNs) were developed to locally deliver functionalized NPs with combined chemotherapy and photothermal therapy (PTT).

5.
Acta Pharmaceutica Sinica B ; (6): 1030-1046, 2021.
Article in English | WPRIM (Western Pacific) | ID: wpr-881183

ABSTRACT

When nanoparticles were introduced into the biological media, the protein corona would be formed, which endowed the nanoparticles with new bio-identities. Thus, controlling protein corona formation is critical to

6.
Acta Pharmaceutica Sinica B ; (6): 505-519, 2021.
Article in English | WPRIM (Western Pacific) | ID: wpr-881150

ABSTRACT

Psoriatic arthritis (PsA) is a complicated psoriasis comorbidity with manifestations of psoriatic skin and arthritic joints, and tailoring specific treatment strategies for simultaneously delivering different drugs to different action sites in PsA remains challenging. We developed a need-based layered dissolving microneedle (MN) system loading immunosuppressant tacrolimus (TAC) and anti-inflammatory diclofenac (DIC) in different layers of MNs,

7.
Acta Pharmaceutica Sinica B ; (6): 2609-2644, 2021.
Article in English | WPRIM (Western Pacific) | ID: wpr-888876

ABSTRACT

Membrane-disruptive peptides/peptidomimetics (MDPs) are antimicrobials or anticarcinogens that present a general killing mechanism through the physical disruption of cell membranes, in contrast to conventional chemotherapeutic drugs, which act on precise targets such as DNA or specific enzymes. Owing to their rapid action, broad-spectrum activity, and mechanisms of action that potentially hinder the development of resistance, MDPs have been increasingly considered as future therapeutics in the drug-resistant era. Recently, growing experimental evidence has demonstrated that MDPs can also be utilized as adjuvants to enhance the therapeutic effects of other agents. In this review, we evaluate the literature around the broad-spectrum antimicrobial properties and anticancer activity of MDPs, and summarize the current development and mechanisms of MDPs alone or in combination with other agents. Notably, this review highlights recent advances in the design of various MDP-based drug delivery systems that can improve the therapeutic effect of MDPs, minimize side effects, and promote the co-delivery of multiple chemotherapeutics, for more efficient antimicrobial and anticancer therapy.

8.
Acta Pharmaceutica Sinica B ; (6): 2326-2343, 2021.
Article in English | WPRIM (Western Pacific) | ID: wpr-888865

ABSTRACT

Proteins and peptides have become a significant therapeutic modality for various diseases because of their high potency and specificity. However, the inherent properties of these drugs, such as large molecular weight, poor stability, and conformational flexibility, make them difficult to be formulated and delivered. Injection is the primary route for clinical administration of protein and peptide drugs, which usually leads to poor patient's compliance. As a portable, minimally invasive device, microneedles (MNs) can overcome the skin barrier and generate reversible microchannels for effective macromolecule permeation. In this review, we highlighted the recent advances in MNs-mediated transdermal delivery of protein and peptide drugs. Emphasis was given to the latest development in representative MNs design and fabrication. We also summarize the current application status of MNs-mediated transdermal protein and peptide delivery, especially in the field of infectious disease, diabetes, cancer, and other disease therapy. Finally, the current status of clinical translation and a perspective on future development are also provided.

9.
Acta Pharmaceutica Sinica B ; (6): 2404-2416, 2020.
Article in English | WPRIM (Western Pacific) | ID: wpr-881120

ABSTRACT

Pulmonary drug delivery has attracted increasing attention in biomedicine, and porous particles can effectively enhance the aerosolization performance and bioavailability of drugs. However, the existing methods for preparing porous particles using porogens have several drawbacks, such as the inhomogeneous and uncontrollable pores, drug leakage, and high risk of fragmentation. In this study, a series of cyclodextrin-based metal-organic framework (CD-MOF) particles containing homogenous nanopores were delicately engineered without porogens. Compared with commercial inhalation carrier, CD-MOF showed excellent aerosolization performance because of the homogenous nanoporous structure. The great biocompatibility of CD-MOF in pulmonary delivery was also confirmed by a series of experiments, including cytotoxicity assay, hemolysis ratio test, lung function evaluation,

10.
Acta Pharmaceutica Sinica B ; (6): 2198-2211, 2020.
Article in English | WPRIM (Western Pacific) | ID: wpr-881106

ABSTRACT

Malignant tumor has become an urgent threat to global public healthcare. Because of the heterogeneity of tumor, single therapy presents great limitations while synergistic therapy is arousing much attention, which shows desperate need of intelligent carrier for co-delivery. A core‒shell dual metal-organic frameworks (MOFs) system was delicately designed in this study, which not only possessed the unique properties of both materials, but also provided two individual specific functional zones for co-drug delivery. Photosensitizer indocyanine green (ICG) and chemotherapeutic agent doxorubicin (DOX) were stepwisely encapsulated into the nanopores of MIL-88 core and ZIF-8 shell to construct a synergistic photothermal/photodynamic/chemotherapy nanoplatform. Except for efficient drug delivery, the MIL-88 could be functioned as a nanomotor to convert the excessive hydrogen peroxide at tumor microenvironment into adequate oxygen for photodynamic therapy. The DOX release from MIL-88-ICG@ZIF-8-DOX nanoparticles was triggered at tumor acidic microenvironment and further accelerated by near-infrared (NIR) light irradiation. The

11.
Acta Pharmaceutica Sinica B ; (6): 1331-1346, 2020.
Article in English | WPRIM (Western Pacific) | ID: wpr-828804

ABSTRACT

An explicit illustration of pulmonary delivery processes (PDPs) was a prerequisite for the formulation design and optimization of carrier-based DPIs. However, the current evaluation approaches for DPIs could not provide precise investigation of each PDP separately, or the approaches merely used a simplified and idealized model. In the present study, a novel modular modified Sympatec HELOS (MMSH) was developed to fully investigate the mechanism of each PDP separately in real-time. An inhaler device, artificial throat and pre-separator were separately integrated with a Sympatec HELOS. The dispersion and fluidization, transportation, detachment and deposition processes of pulmonary delivery for model DPIs were explored under different flow rates. Moreover, time-sliced measurements were used to monitor the PDPs in real-time. The Next Generation Impactor (NGI) was applied to determine the aerosolization performance of the model DPIs. The release profiles of the drug particles, drug aggregations and carriers were obtained by MMSH in real-time. Each PDP of the DPIs was analyzed in detail. Moreover, a positive correlation was established between the total release amount of drug particles and the fine particle fraction (FPF) values ( = 0.9898). The innovative MMSH was successfully developed and was capable of illustrating the PDPs and the mechanism of carrier-based DPIs, providing a theoretical basis for the design and optimization of carrier-based DPIs.

12.
Biochimie ; 156: 69-78, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30296465

ABSTRACT

Oral cancer being one of the lethal cancers is generally detected at advanced stages and causes significant mortality world over. The unavailability of the reliable biomarkers and therapeutic targets/agents forms a bottleneck in the treatment of oral cancer. MicroRNAs are considered of immense therapeutic potential for the treatment of cancer. Consistently, in this study the role and therapeutic potential of miR-650 was explored in oral cancer. The analysis of miR-650 expression by qRT-PCR revealed significant (p < 0.05) upregulation of miR-650 in oral cancer cell lines. Cell cycle analysis by flow cytometery revealed that suppression of miR-650 significantly (p < 0.05) inhibits the proliferation of the SCC-25 cells by prompting Sub-G1 cell cycle arrest. Further, miR-650 suppression also inhibited the migration and invasion of the SCC-25 oral cancer cells as revealed by transwell assays. TargetScan analysis showed that miR-650 targets Growth factor independent 1 (Gfi1). Moreover, the results of western blot analysis showed that miR-650 suppression inhibits the expression of Gfi1. Interestingly, suppression of Gfi1 exhibited similar effects on cell proliferation, migration and invasion of the oral cancer cells as that of miR-650 suppression. Nonetheless, miR-650 promoted the proliferation, migration and invasion of the SCC-25 cells by upregulating the expression of Gfi1. Moreover, overexpression of miR-650 could not rescue the effects of Gfi1 silencing on SCC-25 oral cancer cells. Conversely, overexpression of Gfi1 could rescue the effects of miR-650 inhibition on SCC-25 cell proliferation, migration and invasion. Additionally, miR-650 suppression could also inhibit the xenografted tumor growth in vivo by inhibiting the expression of Gfi1. Taken together, miR-650 may prove to be an important therapeutic target for the management of oral cancers.


Subject(s)
Cell Movement , DNA-Binding Proteins/metabolism , G1 Phase Cell Cycle Checkpoints , MicroRNAs/metabolism , Neoplasm Proteins/metabolism , RNA, Neoplasm/metabolism , Transcription Factors/metabolism , Animals , Cell Line, Tumor , DNA-Binding Proteins/genetics , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Mouth Neoplasms , Neoplasm Invasiveness , Neoplasm Proteins/genetics , RNA, Neoplasm/genetics , Transcription Factors/genetics
13.
Acta Pharmaceutica Sinica B ; (6): 165-177, 2018.
Article in English | WPRIM (Western Pacific) | ID: wpr-690922

ABSTRACT

Mesoporous silica nanoparticles (MSNs) are attracting increasing interest for potential biomedical applications. With tailored mesoporous structure, huge surface area and pore volume, selective surface functionality, as well as morphology control, MSNs exhibit high loading capacity for therapeutic agents and controlled release properties if modified with stimuli-responsive groups, polymers or proteins. In this review article, the applications of MSNs in pharmaceutics to improve drug bioavailability, reduce drug toxicity, and deliver with cellular targetability are summarized. Particularly, the exciting progress in the development of MSNs-based effective delivery systems for poorly soluble drugs, anticancer agents, and therapeutic genes are highlighted.

14.
Acta Pharmaceutica Sinica B ; (6): 449-457, 2018.
Article in English | WPRIM (Western Pacific) | ID: wpr-690894

ABSTRACT

Dissolving microneedles carried drug molecules can effectively penetrate the stratum corneum of skin to improve the transdermal drug delivery. The traditional Chinese medicine acupuncture is based on the needle stimulation at a specific location (acupoint) to generate and transmit biochemical and physiological signals which alter the pathophysiological state of patients. However, the pain associated with conventional acupuncture needles and the requirement of highly trained professionals limit the development of acupuncture in non-Asian countries. The purpose of this study is to investigate whether the dissolving microneedles can be utilized as a self-administered painless replacement for acupuncture and locally released drug molecules can achieve expected therapeutic outcomes. Immunosuppressive rats were treated with acupuncture at Zusanli (ST36) acupoint using microneedles containing thymopentin. The immune functions and psychological mood of the immunosuppressed animals were examined. The proliferation of splenocytes was examined by CCK-8 assay. CD4 and CD8 expression patterns in spleen cells were detected by flow cytometry. The current study showed that use of either microneedles containing thymopentin or conventional acupuncture both resulted in immune cell proliferation, which was confirmed by flow cytometry. Furthermore, either conventional acupuncture or microneedles were able to effectively mitigate the anxiety caused by immune-suppression when applied on the ST36.

15.
Acta Pharmaceutica Sinica B ; (6): 308-318, 2016.
Article in English | WPRIM (Western Pacific) | ID: wpr-309954

ABSTRACT

Dry powder inhalers (DPIs) offer distinct advantages as a means of pulmonary drug delivery and have attracted much attention in the field of pharmaceutical science. DPIs commonly contain micronized drug particles which, because of their cohesiveness and strong propensity to aggregate, have poor aerosolization performance. Thus carriers with a larger particle size are added to address this problem. However, the performance of DPIs is profoundly influenced by the physical properties of the carrier, particularly their particle size, morphology/shape and surface roughness. Because these factors are interdependent, it is difficult to completely understand how they individually influence DPI performance. The purpose of this review is to summarize and illuminate how these factors affect drug-carrier interaction and influence the performance of DPIs.

16.
Acta Pharmaceutica Sinica ; (12): 1272-9, 2015.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-505045

ABSTRACT

A lactoferrin-containing PEGylated liposome system (Lf-PLS) was developed and tested in vitro as a hepatoma-targeting drug delivery system. PEGylated liposomes (PLS) were successfully prepared using the thin film hydration method with peglipid post insertion. Lf was covalently conjugated onto the carboxyl terminal of DSPE-PEG2000-COOH on liposomes. Coumarin-6 was used to trace Lf-PLS with fluorescence. The cellular uptake of this system was carried out in asialoglycoprotein receptor (ASGPR) positive HepG2 cells via confocal microscopy and flow cytometry. The Lf-PLS liposome was observed as spherical or oval vesicles with the particle size around 130 nm, zeta potential about -30 mV and encapsulation efficiency more than 80%. The confocal microscopy images and flow cytometry data demonstrated that Lf-PLS resulted in significantly higher cell association by ASGPR positive HepG2 cells compared to PLS. The association between Lf-PLS and cells were dependent on the concentration, time and temperature, which was inhibited by pre-incubation with excessive free Lf. The results suggest that Lf-PLS has a good targeting effect on HepG2 cells in vitro. The targeting mechanism may be related to the specific binding of Lf and ASGPR on HepG2 cells, which guides Lf-PLS to the cell surface to induce an active endocytosis process. All these results demonstrated that Lf-PLS might be a potential drug delivery system in targeting hepatocellular carcinoma, which deserves more research on its targeting ability, antitumor efficiency, and metabolism in vivo for treatment of hepatomacellular carcinoma.

17.
Acta Pharmaceutica Sinica ; (12): 492-9, 2015.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-483350

ABSTRACT

Hot-melt extrusion was applied to prepare mesoporous silica/ethylcellulose mini-matrix for sustained release, and fenofibrate was used as a model drug, ethylcellulose and xanthan gum were chosen as sustained-release agent and releasing moderator, respectively. This novel matrix obtained the controlled release ability by combining mesoporous silica drug delivery system and hot-melt extrusion technology. And mesoporous silica particle (SBA-15) was chosen as drug carrier to increase the dissolution rate of fenofibrate in this martix. Scanning electron microscope, transmission electron microscope, small angle X-ray powder diffraction and N2 adsorption-desorption were introduced to determine the particle morphology, particle size and pore structure of the synthesized SBA-15. The results showed that SBA-15 had a very high Brunauer-Emmett-Teller specific surface area, a narrow pore size distribution, large pore volume and a ordered two-dimensional hexagonal structure of p6mm symmetry. Differential scanning calorimetry and X-ray powder diffraction results demonstrated that fenofibrate dispersed in an amorphous state inside the pores of the mesoporous silica which contributed to the improvement in the dissolution rate. The drug release of mini-matrices was influenced by ethylcellulose viscosity grades and xanthan gum concentration, which increased with the increasing of xanthan gum concentration and decreasing of ethylcellulose viscosity. Mini-matrix containing 22% xanthan gum exhibited a good sustained release performance, and the drug release behavior followed the first-order kinetics.

18.
Acta Pharmaceutica Sinica ; (12): 1069-75, 2014.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-448695

ABSTRACT

The purpose of this study is to investigate the preparation of hydroxycamptothecine (HCPT)-loaded cubic crystal liquid embolic precursor solution, and evaluate its in vitro embolic efficiency. Phytantriol was used as cubic crystal liquid embolic material, and the optimal formulation was selected according to ternary phase diagram. Polarized light microscopy, differential scanning calorimetry, and small angle X-ray scattering (SAXS) were used to characterize the cubic crystal structure. High performance liquid chromatography and X-ray diffraction analysis were used to investigate the lactone ring of HCPT. In vitro dissolution was preliminary evaluated, and the simulation embolic model was constructed to evaluate the embolic efficiency of precursor solution. Meanwhile, the gelation time and adhesion force were investigated. The results showed that HCPT-loaded precursor solution for embolization had been successfully prepared with low viscosity which was injectable. The precursor solution could transform into Pn3m structure liquid crystal phase gel rapidly when contracting with excess water. The formed HPCT gel remained its lactone form as the same in precursor solution, and expressed the good ability to block the saline flow, and HCPT could keep sustained releasing drug over 30 days. The prepared drug-loaded embolic precursor solution showed a promising potential for vascular embolization and application in clinical treatment of tumor.

19.
Acta Pharmaceutica Sinica B ; (6): 74-78, 2014.
Article in English | WPRIM (Western Pacific) | ID: wpr-329752

ABSTRACT

The purpose of this study was to compare the pharmacokinetic profiles of tetramethylpyrazine phosphate (TMPP) in plasma and extracellular fluid of the cerebral cortex of rats via three delivery routes: intranasal (i.n.), intragastric (i.g.) and intravenous (i.v.) administration. After i.n., i.g. and i.v. administration of a single-dose at 10 mg/kg, cerebral cortex dialysates and plasma samples drawn from the carotid artery were collected at timed intervals. The concentration of TMPP in the samples was analyzed by HPLC. The area under the concentration-time curve (AUC) and the ratio of the AUCbrain to the AUCplasma (drug targeting efficiency, DTE) was calculated to evaluate the brain targeting efficiency of the drug via these different routes of administration. After i.n. administration, TMPP was rapidly absorbed to reach its peak plasma concentration within 5 min and showed a delayed uptake into cerebral cortex (t max=15 min). The ratio of the AUCbrain dialysates value between i.n. route and i.v. injection was 0.68, which was greater than that obtained after i.g. administration (0.43). The systemic bioavailability obtained with i.n. administration was greater than that obtained by the i.g. route (86.33% vs. 50.39%), whereas the DTE of the nasal route was 78.89%, close to that of oral administration (85.69%). These results indicate that TMPP is rapidly absorbed from the nasal mucosa into the systemic circulation, and then crosses the blood-brain barrier (BBB) to reach the cerebral cortex. Intranasal administration of TMPP could be a promising alternative to intravenous and oral approaches.

20.
Acta Pharmaceutica Sinica B ; (6): 447-453, 2014.
Article in English | WPRIM (Western Pacific) | ID: wpr-329703

ABSTRACT

In this work, retinal penetration of fluorescein was achieved in vitro by covalent attachment of taurine to fluorescein, yielding the F-Tau conjugate. Nuclear magnetic resonance (NMR) and high resolution mass spectrometry (HRMS) were used to confirm the successful synthesis of F-Tau. The cellular uptake of F-Tau in adult retinal pigment epithelial cells (ARPE-19) and human retinal microvascular endothelial cells (hRMECs) was visualized via confocal scanning microscopy. The results indicated an improvement of solubility and a reduction of logP of F-Tau compared with fluorescein. As compared with fluorescein, F-Tau showed little toxicity, and was retained longer by cells in uptake experiments. F-Tau also displayed higher transepithelial permeabilities than fluorescein in ARPE-19 and hRMECs monolayer cells (P<0.05). These results showed that taurine may be a useful ligand for targeting small-molecule hydrophobic pharmaceuticals into the retina.

SELECTION OF CITATIONS
SEARCH DETAIL
...