Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Curr Top Dev Biol ; 151: 217-244, 2023.
Article in English | MEDLINE | ID: mdl-36681471

ABSTRACT

Segregation of chromosomes during meiosis, to form haploid gametes from diploid precursor cells, requires in most species formation of crossovers physically connecting homologous chromosomes. Along with sister chromatid cohesion, crossovers allow tension to be generated when chromosomes begin to segregate; tension signals that chromosome movement is proceeding properly. But crossovers too close to each other might result in less sister chromatid cohesion and tension and thus failed meiosis. Interference describes the non-random distribution of crossovers, which occur farther apart than expected from independence. We discuss both genetic and cytological methods of assaying crossover interference and models for interference, whose molecular mechanism remains to be elucidated. We note marked differences among species.


Subject(s)
Chromosomes , Meiosis , Meiosis/genetics , Chromosome Segregation/genetics
2.
Microbiol Spectr ; 10(1): e0203221, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196809

ABSTRACT

Taiwanofungus camphoratus mushrooms are a complementary and alternative medicine for hangovers, cancer, hypertension, obesity, diabetes, and inflammation. Though Taiwanofungus camphoratus has attracted considerable biotechnological and pharmacological attention, neither classical genetic nor genomic approaches have been properly established for it. We isolated four sexually competent monokaryons from two T. camphoratus dikaryons used for the commercial cultivation of orange-red (HC1) and milky-white (SN1) mushrooms, respectively. We also sequenced, annotated, and comparatively analyzed high-quality and chromosome-level genome sequences of these four monokaryons. These genomic resources represent a valuable basis for understanding the biology, evolution, and secondary metabolite biosynthesis of this economically important mushrooms. We demonstrate that T. camphoratus has a tetrapolar mating system and that HC1 and SN1 represent two intraspecies isolates displaying karyotypic variation. Compared with several edible mushroom model organisms, T. camphoratus underwent a significant contraction in the gene family and individual gene numbers, most notably for plant, fungal, and bacterial cell-wall-degrading enzymes, explaining why T. camphoratus mushrooms are rare in natural environments, are difficult and time-consuming to artificially cultivate, and are susceptible to fungal and bacterial infections. Our results lay the foundation for an in-depth T. camphoratus study, including precise genetic manipulation, improvements to mushroom fruiting, and synthetic biology applications for producing natural medicinal products. IMPORTANCETaiwanofungus camphoratus (Tc) is a basidiomycete fungus that causes brown heart rot of the aromatic tree Cinnamomum kanehirae. The Tc fruiting bodies have been used to treat hangovers, abdominal pain, diarrhea, hypertension, and other diseases first by aboriginal Taiwanese and later by people in many countries. To establish classical genetic and genomic approaches for this economically important medicinal mushroom, we first isolated and characterized four sexually competent monokaryons from two dikaryons wildly used for commercial production of Tc mushrooms. We applied PacBio single molecule, real-time sequencing technology to determine the near-completed genome sequences of four monokaryons. These telomere-to-telomere and gapless haploid genome sequences reveal all genomic variants needed to be studied and discovered, including centromeres, telomeres, retrotransposons, mating type loci, biosynthetic, and metabolic gene clusters. Substantial interspecies diversities are also discovered between Tc and several other mushroom model organisms, including Agrocybe aegerita, Coprinopsis cinerea, and Schizophyllum commune, and Ganoderma lucidum.


Subject(s)
Chromosomes , Genomics , Polyporales/genetics , Polyporales/metabolism , Whole Genome Sequencing , Agaricales , Basidiomycota , Fruiting Bodies, Fungal/genetics , Humans , Mycelium , Secondary Metabolism/genetics , Sequence Analysis, DNA , Transcriptome
3.
J Cell Sci ; 135(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-35028663

ABSTRACT

Appropriate DNA double-strand break (DSB) and crossover distributions are required for proper meiotic chromosome segregation. Schizosaccharomyces pombe linear element proteins (LinEs) determine DSB hotspots; LinE-bound hotspots form three-dimensional clusters over ∼200 kb chromosomal regions. Here, we investigated LinE configurations and distributions in live cells using super-resolution fluorescence microscopy. We found LinEs form two chromosomal structures, dot-like and linear structures, in both zygotic and azygotic meiosis. Dot-like LinE structures appeared around the time of meiotic DNA replication, underwent dotty-to-linear-to-dotty configurational transitions and disassembled before the first meiotic division. DSB formation and repair did not detectably influence LinE structure formation but failure of DSB formation delayed disassembly. Recombination-deficient LinE missense mutants formed dot-like, but not linear, LinE structures. Our quantitative study reveals a transient form of LinE structures and suggests a novel role for LinE proteins in regulating meiotic events, such as DSB repair. We discuss the relationship of LinEs and the synaptonemal complex in other species. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , DNA/metabolism , DNA Breaks, Double-Stranded , Humans , Meiosis/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Synaptonemal Complex/metabolism
4.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33593897

ABSTRACT

Most eukaryotes possess two RecA-like recombinases (ubiquitous Rad51 and meiosis-specific Dmc1) to promote interhomolog recombination during meiosis. However, some eukaryotes have lost Dmc1. Given that mammalian and yeast Saccharomyces cerevisiae (Sc) Dmc1 have been shown to stabilize recombination intermediates containing mismatches better than Rad51, we used the Pezizomycotina filamentous fungus Trichoderma reesei to address if and how Rad51-only eukaryotes conduct interhomolog recombination in zygotes with high sequence heterogeneity. We applied multidisciplinary approaches (next- and third-generation sequencing technology, genetics, cytology, bioinformatics, biochemistry, and single-molecule biophysics) to show that T. reesei Rad51 (TrRad51) is indispensable for interhomolog recombination during meiosis and, like ScDmc1, TrRad51 possesses better mismatch tolerance than ScRad51 during homologous recombination. Our results also indicate that the ancestral TrRad51 evolved to acquire ScDmc1-like properties by creating multiple structural variations, including via amino acid residues in the L1 and L2 DNA-binding loops.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Fungal Proteins/metabolism , Genome, Fungal , Homologous Recombination , Hypocreales/metabolism , Meiosis , Rad51 Recombinase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cell Cycle Proteins/genetics , DNA, Single-Stranded , DNA-Binding Proteins/genetics , Fungal Proteins/genetics , Hypocreales/genetics , Rad51 Recombinase/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
5.
DNA Repair (Amst) ; 81: 102648, 2019 09.
Article in English | MEDLINE | ID: mdl-31345733

ABSTRACT

During meiosis, homologous chromosomes of a diploid cell are replicated and, without a second replication, are segregated during two nuclear divisions to produce four haploid cells (including discarded polar bodies in females of many species). Proper segregation of chromosomes at the first division requires in most species that homologous chromosomes be physically connected. Tension generated by connected chromosomes moving to opposite sides of the cell signals proper segregation. In the absence of the required connections, called crossovers, chromosomes often segregate randomly and produce aneuploid gametes and, thus, dead or disabled progeny. To be effective, crossovers must be properly distributed along chromosomes. Crossovers within or too near the centromere interfere with proper segregation; crossovers too near each other can ablate the required tension; and crossovers too concentrated in only one or a few regions would not re-assort most genetic characters important for evolution. Here, we discuss current knowledge of how the optimal distribution of crossovers is achieved in the fission yeast Schizosaccharomyces pombe, with reference to other well-studied species for comparison and illustration of the diversity of biology.


Subject(s)
Chromosome Segregation , Crossing Over, Genetic , Meiosis , Schizosaccharomyces/genetics , Animals , Eukaryota/genetics , Evolution, Molecular , Fertility , Humans
6.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28916559

ABSTRACT

The filamentous fungus Trichoderma reesei is found predominantly in the tropics but also in more temperate regions, such as Europe, and is widely known as a producer of large amounts of plant cell wall-degrading enzymes. We sequenced the genome of the sexually competent isolate CBS999.97, which is phenotypically different from the female sterile strain QM6a but can cross sexually with QM6a. Transcriptome data for growth on cellulose showed that entire carbohydrate-active enzyme (CAZyme) families are consistently differentially regulated between these strains. We evaluated backcrossed strains of both mating types, which acquired female fertility from CBS999.97 but maintained a mostly QM6a genetic background, and we could thereby distinguish between the effects of strain background and female fertility or mating type. We found clear regulatory differences associated with female fertility and female sterility, including regulation of CAZyme and transporter genes. Analysis of carbon source utilization, transcriptomes, and secondary metabolites in these strains revealed that only a few changes in gene regulation are consistently correlated with different mating types. Different strain backgrounds (QM6a versus CBS999.97) resulted in the most significant alterations in the transcriptomes and in carbon source utilization, with decreased growth of CBS999.97 on several amino acids (for example proline or alanine), which further correlated with the downregulation of genes involved in the respective pathways. In combination, our findings support a role of fertility-associated processes in physiology and gene regulation and are of high relevance for the use of sexual crossing in combining the characteristics of two compatible strains or quantitative trait locus (QTL) analysis.IMPORTANCETrichoderma reesei is a filamentous fungus with a high potential for secretion of plant cell wall-degrading enzymes. We sequenced the genome of the fully fertile field isolate CBS999.97 and analyzed its gene regulation characteristics in comparison with the commonly used laboratory wild-type strain QM6a, which is not female fertile. Additionally, we also evaluated fully fertile strains with genotypes very close to that of QM6a in order to distinguish between strain-specific and fertility-specific characteristics. We found that QM6a and CBS999.97 clearly differ in their growth patterns on different carbon sources, CAZyme gene regulation, and secondary metabolism. Importantly, we found altered regulation of 90 genes associated with female fertility, including CAZyme genes and transporter genes, but only minor mating type-dependent differences. Hence, when using sexual crossing in research and for strain improvement, it is important to consider female fertile and female sterile strains for comparison with QM6a and to achieve optimal performance.


Subject(s)
Cellulase/genetics , Fungal Proteins/genetics , Membrane Transport Proteins/genetics , Trichoderma/enzymology , Cellulase/metabolism , Cellulose/metabolism , Fungal Proteins/metabolism , Genes, Mating Type, Fungal , Membrane Transport Proteins/metabolism , Transcription, Genetic , Trichoderma/genetics , Trichoderma/growth & development
7.
Biotechnol Biofuels ; 10: 170, 2017.
Article in English | MEDLINE | ID: mdl-28690679

ABSTRACT

BACKGROUND: Trichoderma reesei (Ascomycota, Pezizomycotina) QM6a is a model fungus for a broad spectrum of physiological phenomena, including plant cell wall degradation, industrial production of enzymes, light responses, conidiation, sexual development, polyketide biosynthesis, and plant-fungal interactions. The genomes of QM6a and its high enzyme-producing mutants have been sequenced by second-generation-sequencing methods and are publicly available from the Joint Genome Institute. While these genome sequences have offered useful information for genomic and transcriptomic studies, their limitations and especially their short read lengths make them poorly suited for some particular biological problems, including assembly, genome-wide determination of chromosome architecture, and genetic modification or engineering. RESULTS: We integrated Pacific Biosciences and Illumina sequencing platforms for the highest-quality genome assembly yet achieved, revealing seven telomere-to-telomere chromosomes (34,922,528 bp; 10877 genes) with 1630 newly predicted genes and >1.5 Mb of new sequences. Most new sequences are located on AT-rich blocks, including 7 centromeres, 14 subtelomeres, and 2329 interspersed AT-rich blocks. The seven QM6a centromeres separately consist of 24 conserved repeats and 37 putative centromere-encoded genes. These findings open up a new perspective for future centromere and chromosome architecture studies. Next, we demonstrate that sexual crossing readily induced cytosine-to-thymine point mutations on both tandem and unlinked duplicated sequences. We also show by bioinformatic analysis that T. reesei has evolved a robust repeat-induced point mutation (RIP) system to accumulate AT-rich sequences, with longer AT-rich blocks having more RIP mutations. The widespread distribution of AT-rich blocks correlates genome-wide partitions with gene clusters, explaining why clustering of genes has been reported to not influence gene expression in T. reesei. CONCLUSION: Compartmentation of ancestral gene clusters by AT-rich blocks might promote flexibilities that are evolutionarily advantageous in this fungus' soil habitats and other natural environments. Our analyses, together with the complete genome sequence, provide a better blueprint for biotechnological and industrial applications.

8.
Nucleic Acids Res ; 44(5): 2199-213, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26743002

ABSTRACT

Double-strand breaks (DSBs) in chromosomes are the most challenging type of DNA damage. The yeast and mammalian Mre11-Rad50-Xrs2/Nbs1 (MRX/N)-Sae2/Ctp1 complex catalyzes the resection of DSBs induced by secondary structures, chemical adducts or covalently-attached proteins. MRX/N also initiates two parallel DNA damage responses-checkpoint phosphorylation and global SUMOylation-to boost a cell's ability to repair DSBs. However, the molecular mechanism of this SUMO-mediated response is not completely known. In this study, we report that Saccharomyces cerevisiae Mre11 can non-covalently recruit the conjugated SUMO moieties, particularly the poly-SUMO chain. Mre11 has two evolutionarily-conserved SUMO-interacting motifs, Mre11(SIM1) and Mre11(SIM2), which reside on the outermost surface of Mre11. Mre11(SIM1) is indispensable for MRX assembly. Mre11(SIM2) non-covalently links MRX with the SUMO enzymes (E2/Ubc9 and E3/Siz2) to promote global SUMOylation of DNA repair proteins. Mre11(SIM2) acts independently of checkpoint phosphorylation. During meiosis, the mre11(SIM2) mutant, as for mre11S, rad50S and sae2Δ, allows initiation but not processing of Spo11-induced DSBs. Using MRX and DSB repair as a model, our work reveals a general principle in which the conjugated SUMO moieties non-covalently facilitate the assembly and functions of multi-subunit protein complexes.


Subject(s)
DNA Repair , DNA, Fungal/genetics , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/genetics , Exodeoxyribonucleases/genetics , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , DNA Breaks, Double-Stranded , DNA, Fungal/metabolism , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Exodeoxyribonucleases/metabolism , Meiosis , Models, Molecular , Phosphorylation , Protein Binding , Protein Multimerization , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction , Sumoylation , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
9.
Biotechnol Biofuels ; 8: 30, 2015.
Article in English | MEDLINE | ID: mdl-25729429

ABSTRACT

BACKGROUND: Hypocrea jecorina is the sexual form of the industrial workhorse fungus Trichoderma reesei that secretes cellulases and hemicellulases to degrade lignocellulosic biomass into simple sugars, such as glucose and xylose. H. jecorina CBS999.97 is the only T. reesei wild isolate strain that is sexually competent in laboratory conditions. It undergoes a heterothallic reproductive cycle and generates CBS999.97(1-1) and CBS999.97(1-2) haploids with MAT1-1 and MAT1-2 mating-type loci, respectively. T. reesei QM6a and its derivatives (RUT-C30 and QM9414) all have a MAT1-2 mating type locus, but they are female sterile. Sexual crossing of CBS999.97(1-1) with either CBS999.97(1-2) or QM6a produces fruiting bodies containing asci with 16 linearly arranged ascospores (the sexual spores specific to ascomycetes). This sexual crossing approach has created new opportunities for these biotechnologically important fungi. RESULTS: Through genetic and genomic analyses, we show that the 16 ascospores are generated via meiosis followed by two rounds of postmeiotic mitosis. We also found that the haploid genomes of CBS999.97(1-2) and QM6a are similar to that of the ancestral T. reesei strain, whereas the CBS999.97(1-1) haploid genome contains a reciprocal arrangement between two scaffolds of the CBS999.97(1-2) genome. Due to sequence heterozygosity, most 16-spore asci (>90%) contain four or eight inviable ascospores and an equal number of segmentally aneuploid (SAN) ascospores. The viable SAN progeny produced higher levels of xylanases and white conidia due to segmental duplication and deletion, respectively. Moreover, they readily lost the duplicated segment approximately two weeks after germination. With better lignocellulosic biomass degradation capability, these SAN progeny gain adaptive advantages to the natural environment, especially in the early phase of colonization. CONCLUSIONS: Our results have not only further elucidated T. reesei evolution and sexual development, but also provided new perspectives for improving T. reesei industrial strains.

10.
Autophagy ; 10(2): 285-95, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24345927

ABSTRACT

Many of the mechanisms by which organelles are inherited by spores during meiosis are not well understood. Dramatic chromosome motion and bouquet formation are evolutionarily conserved characteristics of meiotic chromosomes. The budding yeast bouquet genes (NDJ1, MPS3, CSM4) mediate these movements via telomere attachment to the nuclear envelope (NE). Here, we report that during meiosis the NE is in direct contact with vacuoles via nucleus-vacuole junctions (NVJs). We show that in meiosis NVJs are assembled through the interaction of the outer NE-protein Nvj1 and the vacuolar membrane protein Vac8. Notably, NVJs function as diffusion barriers that exclude the nuclear pore complexes, the bouquet protein Mps3 and NE-tethered telomeres from the outer nuclear membrane and nuclear ER, resulting in distorted NEs during early meiosis. An increase in NVJ area resulting from Nvj1-GFP overexpression produced a moderate bouquet mutant-like phenotype in wild-type cells. NVJs, as the vacuolar contact sites of the nucleus, were found to undergo scission alongside the NE during meiotic nuclear division. The zygotic NE and NVJs were partly segregated into 4 spores. Lastly, new NVJs were also revealed to be synthesized de novo to rejoin the zygotic NE with the newly synthesized vacuoles in the mature spores. In conclusion, our results revealed that budding yeast nuclei and vacuoles exhibit dynamic interorganelle interactions and different inheritance patterns in meiosis, and also suggested that nvj1Δ mutant cells may be useful to resolve the technical challenges pertaining to the isolation of intact nuclei for the biochemical study of meiotic nuclear proteins.


Subject(s)
Autophagy/physiology , Cell Nucleus/metabolism , Inheritance Patterns/physiology , Meiosis/physiology , Saccharomycetales/metabolism , Vacuoles/metabolism , Animals , Autophagy/genetics , Cell Cycle Proteins/genetics , Inheritance Patterns/genetics , Nuclear Envelope/metabolism , Saccharomycetales/cytology , Saccharomycetales/genetics
11.
J Biol Chem ; 285(13): 9962-9970, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20106980

ABSTRACT

Get3, Get4, and Get5 in Saccharomyces cerevisiae participate in the insertion of tail-anchored proteins into the endoplasmic reticulum membrane. We elucidated the interaction between Get4 and Get5 and investigated their interaction with Get3 and a tetratricopeptide repeat-containing protein, Sgt2. Based on co-immunoprecipitation and crystallographic studies, Get4 and Get5 formed a tight complex, suggesting that they constitute subunits of a larger complex. In contrast, although Get3 interacted physically with the Get4-Get5 complex, low amounts of Get3 co-precipitated with Get5, implying a transient interaction between Get3 and Get4-Get5. Sgt2 also interacted with Get5, although the amount of Sgt2 that co-precipitated with Get5 varied. Moreover, GET3, GET4, and GET5 interacted genetically with molecular chaperone YDJ1, suggesting that chaperones might also be involved in the insertion of tail-anchored proteins.


Subject(s)
Adenosine Triphosphatases/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Guanine Nucleotide Exchange Factors/metabolism , HSP40 Heat-Shock Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Ubiquitin/chemistry , Crystallography, X-Ray/methods , Fungal Proteins/chemistry , Gene Deletion , Gene Expression Profiling , Mass Spectrometry/methods , Membrane Proteins , Molecular Chaperones/metabolism , Protein Interaction Mapping , Protein Structure, Tertiary , Protein Transport , Two-Hybrid System Techniques , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...